变异系数法之matlab

变异系数法之matlab1.简介2.算法原理2.1指标正向化2.2数据标准化2.3计算变异系数2.4计算权重以及得分3.实例分析3.1读取数据3.2指标正向化3.3数据标准化3.4计算变异系数3.5计算权重3.6计算得分完整代码

大家好,又见面了,我是你们的朋友全栈君。

目录

1.简介

2.算法原理

2.1 指标正向化

2.2 数据标准化

2.3 计算变异系数

2.4 计算权重以及得分

3.实例分析

3.1 读取数据

3.2 指标正向化

3.3 数据标准化

3.4 计算变异系数

3.5 计算权重

3.6 计算得分 

完整代码 


1.简介

        变异系数法(Coefficient of variation method)又称”标准差率”(标准差与平均数的比值)是直接利用各项指标所包含的信息,通过计算得到指标的权重。是一种客观赋权的方法。此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差距。例如,在评价各个国家的经济发展状况时,选择人均国民生产总值(人均GNP)作为评价的标准指标之一,是因为人均GNP不仅能反映各个国家的经济发展水平,还能反映一个国家的现代化程度。如果各个国家的人均GNP没有多大的差别,则这个指标用来衡量现代化程度、经济发展水平就失去了意义。

2.算法原理

2.1 指标正向化

        和熵权法的指标正向化类似,正向指标越大越好,负向指标越小越好。把指标都转化成正向指标处理。此篇采用新的正向化形式,采用上一篇建模算法熵权法的处理形式也可,基本思想不变就行。这个数据集有正向指标(越大越优型指标)和负向指标(越小越优型指标)两种。

        设有m个待评对象,n个评价指标,可以构成数据矩阵X=(xij)m*n,设数据矩阵内元素,经过指标正向化处理过后的元素为xij’

负向指标:并网点电压偏差越限次数D、有功控制能力F、功率因数越限G属于此类指标

变异系数法之matlab

正向指标:其余所有指标属于此类,可以不用处理

变异系数法之matlab

2.2 数据标准化

        每个指标的数量级不一样,需要把它们化到同一个范围内比较。上一篇建模算法用到了最大最小值标准化方法。此篇可以用一个新的标准化方法,处理如下:

        设标准化后的数据矩阵元素为rij,由上可得指标正向化后数据矩阵元素为xij’

变异系数法之matlab

2.3 计算变异系数

处理过后可以构成数据矩阵R=(rij)m*n

  • 计算指标的均值:

变异系数法之matlab

  •  计算指标的标准差:

变异系数法之matlab

  •  计算变异系数:

变异系数法之matlab

2.4 计算权重以及得分

  • 权重为

变异系数法之matlab

  • 得分为

变异系数法之matlab

3.实例分析

风场名 风场1 风场2 风场3
A(高频率穿越能力) 0.743 0.7567 0.8104
B(低频率穿越能力) 0.8267 0.8033 0.7667
C(低压穿越能力) 0.8324 0.8736 0.8539
D(并网点电压偏差越限次数  12 10 16
ESVC/SVG响应性能指标) 0.8637 0.8538 0.9038
F(有功控制能力) 0.0743 0.0665 0.0881
G(功率因素越限) 0.0409 0.0716 0.0657

3.1 读取数据

data=xlsread('D:\桌面\变异系数.xlsx')

返回:

变异系数法之matlab

3.2 指标正向化

%指标正向    化处理后数据为data1
data1=data;
%%负向指标(越小越优型指标)处理
index=[4,6,7];%负向指标位置
k=0.1;
for i=1:length(index)
  data1(:,index(i))=1./(k+max(abs(data(:,index(i))))+data(:,index(i)))
end

返回:

变异系数法之matlab

3.3 数据标准化

%数据标准化 
data2=data1;
for j=1:size(data1,2)
    data2(:,j)= data1(:,j)./sqrt(sum(data1(:,j).^2));
end
data2

返回:

变异系数法之matlab

3.4 计算变异系数

%计算变异系数
A=mean(data2) %求每列平均值
S=std(data2)  %求每列方差
V=S./A %变异系数

返回:

变异系数法之matlab

3.5 计算权重

%计算权重
w=V./sum(V)

返回:

变异系数法之matlab

3.6 计算得分 

%计算得分
s=data2*w';
Score=100*s/max(s);
for i=1:length(Score)
    %A(i,:)=[row(i), col(i), rho_1(row(i), col(i))];
    fprintf('第%d个风场百分制评分为:%d\n',i,Score(i));   
end

返回:

变异系数法之matlab

完整代码 

clc;clear;
data=xlsread('D:\桌面\变异系数.xlsx');
%指标正向    化处理后数据为data1
data1=data;
%%负向指标(越小越优型指标)处理
index=[4,6,7];%负向指标位置
k=0.1;
for i=1:length(index)
  data1(:,index(i))=1./(k+max(abs(data(:,index(i))))+data(:,index(i)));
end
%数据标准化 
data2=data1;
for j=1:size(data1,2)
    data2(:,j)= data1(:,j)./sqrt(sum(data1(:,j).^2));
end
data2;
%计算变异系数
A=mean(data2); %求每列平均值
S=std(data2);  %求每列方差
V=S./A; %变异系数
%计算权重
w=V./sum(V);
%计算得分
s=data2*w';
Score=100*s/max(s);
for i=1:length(Score)
    %A(i,:)=[row(i), col(i), rho_1(row(i), col(i))];
    fprintf('第%d个风场百分制评分为:%d\n',i,Score(i));   
end
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130935.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Android中View绘制流程以及invalidate()等相关方法分析

    Android中View绘制流程以及invalidate()等相关方法分析

    2021年12月3日
    40
  • HS数据库_hsqldb

    HS数据库_hsqldb前言在对dao层写测试类的时候,我们需要一个测试数据库,一般我们会是专门建立一个真实的测试数据库,但是有了HSQLDB事情就变得简单了起来。正题一、简介:hsql数据库是一款纯Java编写的免费数据库,许可是BSD-style的协议,如果你是使用Java编程的话,前言在对dao层写测试类的时候,我们需要一个测试数据库,一般我们会是专门建立一个真实的测试数据库,但是有了HSQLDB事情就变…

    2022年9月22日
    0
  • 负采样方式

    负采样方式一、随机负采样二、曝光未点击三、混合负采样四、重要性采样五、有偏采样六、NCE采样参考:[mixednegativesampling]MixedNegativeSamplingforLearningTwo-towerNeuralNetworksinRecommendations(2020) [Youtube]Sampling-Bias-CorrectedNeuralModelingforLargeCorpusItemRecomme

    2022年6月29日
    23
  • java中hashcode的用法_javahashcode作用

    java中hashcode的用法_javahashcode作用hashcode()是干什么用的?首先hashcode是哈希算法的一中简单实现,他是一个对象的哈希吗值。一般和equals一起使用。 hashcode也是用来查找的,如果你学过数据结构就应该知道,在查找和排序这一章有 例如内存中有这样的位置 01234567 而我有个类,这个类有个字段叫ID,我要把这个类存放在以上8个位置之一,如果不用hashcode而任意存放,

    2022年9月3日
    2
  • 学习如何搭建SpringBoot框架

    学习如何搭建SpringBoot框架SpringBoot是一个非常好用的框架,在项目中我们常常会用到它,今天我来分享一下如何来搭建一个SpringBoot框架。第一步:创建项目打开Idea,点击File->New->Project->SpringInitalizr选择依赖:即使不选择依赖也可以在后续pom.xml文件中添加点击Finish,Idea会自动生成一个SpringBoot项目,如此一来项目就创建好了。第二步:配置数据库到resource->application.proper

    2022年8月20日
    5
  • centOS7下实践查询版本/CPU/内存/硬盘容量等硬件信息

    centOS7下实践查询版本/CPU/内存/硬盘容量等硬件信息1.内核版本uname-a能确认是64位还是32位,其它的信息不多[root@localhost~]#uname-aLinuxlocalhost.localdomain3.10.0-327.el7.x86_64#1SMPThuNov1922:10:57UTC2015x86_64x86_64x86_64GNU/Linuxmore/etc/*relea

    2022年6月26日
    31

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号