粒子群算法(PSO)的Python实现(求解多元函数的极值)

粒子群算法(PSO)的Python实现(求解多元函数的极值)PSO是寻优算法中比较简单的一种,本文用Python简单实现了PSO算法,用来求解一个五元函数的最大值,并与MATLAB的fmincon函数的运行结果做比较。

大家好,又见面了,我是你们的朋友全栈君。

PSO算法算是寻优算法中比较简单的一种,其大概思想是:
在这里插入图片描述
现在我们计算:
在这里插入图片描述
的极大值,每一个变量的取值范围都是(1,25)。
Python代码为:

# -*- coding: utf-8 -*-
""" @Time : 2020/9/13 10:08 @Author :KI @File :pso.py @Motto:Hungry And Humble """
import math
import random
import numpy as np
import matplotlib.pyplot as plt
import pylab as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']


class PSO:
    def __init__(self, dimension, time, size, low, up, v_low, v_high):
        # 初始化
        self.dimension = dimension  # 变量个数
        self.time = time  # 迭代的代数
        self.size = size  # 种群大小
        self.bound = []  # 变量的约束范围
        self.bound.append(low)
        self.bound.append(up)
        self.v_low = v_low
        self.v_high = v_high
        self.x = np.zeros((self.size, self.dimension))  # 所有粒子的位置
        self.v = np.zeros((self.size, self.dimension))  # 所有粒子的速度
        self.p_best = np.zeros((self.size, self.dimension))  # 每个粒子最优的位置
        self.g_best = np.zeros((1, self.dimension))[0]  # 全局最优的位置

        # 初始化第0代初始全局最优解
        temp = -1000000
        for i in range(self.size):
            for j in range(self.dimension):
                self.x[i][j] = random.uniform(self.bound[0][j], self.bound[1][j])
                self.v[i][j] = random.uniform(self.v_low, self.v_high)
            self.p_best[i] = self.x[i]  # 储存最优的个体
            fit = self.fitness(self.p_best[i])
            # 做出修改
            if fit > temp:
                self.g_best = self.p_best[i]
                temp = fit

    def fitness(self, x):
        """ 个体适应值计算 """
        x1 = x[0]
        x2 = x[1]
        x3 = x[2]
        x4 = x[3]
        x5 = x[4]
        y = math.floor((x2 * np.exp(x1) + x3 * np.sin(x2) + x4 + x5) * 100) / 100
        # print(y)
        return y

    def update(self, size):
        c1 = 2.0  # 学习因子
        c2 = 2.0
        w = 0.8  # 自身权重因子
        for i in range(size):
            # 更新速度(核心公式)
            self.v[i] = w * self.v[i] + c1 * random.uniform(0, 1) * (
                    self.p_best[i] - self.x[i]) + c2 * random.uniform(0, 1) * (self.g_best - self.x[i])
            # 速度限制
            for j in range(self.dimension):
                if self.v[i][j] < self.v_low:
                    self.v[i][j] = self.v_low
                if self.v[i][j] > self.v_high:
                    self.v[i][j] = self.v_high

            # 更新位置
            self.x[i] = self.x[i] + self.v[i]
            # 位置限制
            for j in range(self.dimension):
                if self.x[i][j] < self.bound[0][j]:
                    self.x[i][j] = self.bound[0][j]
                if self.x[i][j] > self.bound[1][j]:
                    self.x[i][j] = self.bound[1][j]
            # 更新p_best和g_best
            if self.fitness(self.x[i]) > self.fitness(self.p_best[i]):
                self.p_best[i] = self.x[i]
            if self.fitness(self.x[i]) > self.fitness(self.g_best):
                self.g_best = self.x[i]

    def pso(self):
        best = []
        self.final_best = np.array([1, 2, 3, 4, 5])
        for gen in range(self.time):
            self.update(self.size)
            if self.fitness(self.g_best) > self.fitness(self.final_best):
                self.final_best = self.g_best.copy()
            print('当前最佳位置:{}'.format(self.final_best))
            temp = self.fitness(self.final_best)
            print('当前的最佳适应度:{}'.format(temp))
            best.append(temp)
        t = [i for i in range(self.time)]
        plt.figure()
        plt.plot(t, best, color='red', marker='.', ms=15)
        plt.rcParams['axes.unicode_minus'] = False
        plt.margins(0)
        plt.xlabel(u"迭代次数")  # X轴标签
        plt.ylabel(u"适应度")  # Y轴标签
        plt.title(u"迭代过程")  # 标题
        plt.show()


if __name__ == '__main__':
    time = 50
    size = 100
    dimension = 5
    v_low = -1
    v_high = 1
    low = [1, 1, 1, 1, 1]
    up = [25, 25, 25, 25, 25]
    pso = PSO(dimension, time, size, low, up, v_low, v_high)
    pso.pso()

运行结果:
在这里插入图片描述
收敛过程:
在这里插入图片描述
可以看出,不到10次就收敛了。

matlab代码:

z=@(x)-(x(2)*exp(x(1))+x(3)*sin(x(2))+x(4)*x(5));
x0=[1;1;1;1;1];
[x,feval]=fmincon(z,x0,[],[],[],[],[1;1;1;1;1],[25;25;25;25;25])

运行结果:

x =

   25.0000
   25.0000
   13.1400
    1.0002
    1.0002


feval =
  -1.8001e+12

如果想要利用上述代码求极小值,可以有以下两种办法:

  1. 将fitness函数中的返回值改为-y,此时如果求出的值为z,那么函数的极小值就为-z。
  2. 将第34行代码处的temp改为一个很大的值;将第42、83、85以及93行代码处的”>“改为”<“。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130988.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 一气之下,我一行代码搞定了约瑟夫环问题,面试官懵了[通俗易懂]

    一气之下,我一行代码搞定了约瑟夫环问题,面试官懵了[通俗易懂]大家好,我是帅地。对于约瑟夫环问题估计大家都听说过,除非你刚刚读大一,因为在大一大部分学校的课本都会降到这个算法题。为了以防万一你没听过,我还是给下问题的描述问题描述:编号为1-N的N个士兵围坐在一起形成一个圆圈,从编号为1的士兵开始依次报数(1,2,3…这样依次报),数到m的士兵会被杀死出列,之后的士兵再从1开始报数。直到最后剩下一士兵,求这个士兵的编号。记得有一次,貌似是阿里的面试,面试官给了我一到原汁原味的约瑟夫好,好家伙,看我不把你秀一把。不过,作为一个有着几十场面

    2022年6月4日
    37
  • Maven 打包问题「建议收藏」

    Maven 打包问题「建议收藏」Maven打包问题1、问题描述2、问题分析3、问题解决4、总结1、问题描述今天给聚合工程统一打包时出现这样一个异常packaging’withvalue’jar’isinvalid.Aggregatorprojectsrequire’pom’aspackaging.@line4,column109。完整异常如下:[INFO]Scanningforpro…

    2022年5月22日
    35
  • 先验概率和后验概率的定义是什么_先验和后验什么意思

    先验概率和后验概率的定义是什么_先验和后验什么意思话不多说,我因为在学习朴素贝叶斯的时候有点分不清楚先验概率、后验概率,所以就网上找了一些资料,大家各有各的理解,但感觉还是不太能从定义上区分,所以就有了下面这张图:图里面说的还是比较清晰的,大家有不理解的地方可以沟通交流嘛。…

    2022年10月18日
    5
  • WPF中的资源(一) – 静态资源和动态资源

    WPF中的资源(一) – 静态资源和动态资源

    2021年5月28日
    124
  • 接口测试用例模板

    接口测试用例模板接口测试用例模板 用例标识 标题 模块 优先级 描述 前置条件 请求类型 请求参数 类型 操作步骤 预期结果 API001 请求使用正确的用户名和密码可以正确登录 用户登录 P1 测试当向登录接口使用正确用户名和密码进行请求可以正确得到登录成功的响应 无 get username string 1打开测试工具 2发送请求信息 3查看反馈信息 状态码:200

    2022年7月17日
    13
  • VMware vSphere系列教程-创建虚拟机(三)

    VMware vSphere系列教程-创建虚拟机(三)

    2022年4月2日
    48

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号