数据挖掘十大算法之Apriori详解

数据挖掘十大算法之Apriori详解在2006年12月召开的IEEE数据挖掘国际会议上,与会的各位专家选出了当时的十大数据挖掘算法(top10dataminingalgorithms),在本系列已经发布的文章中我们已经讨论了其中的七个。本文主要介绍Apriori算法,它是用于关联规则挖掘的经典算法。关联规则挖掘是数据挖掘中非常重要的研究话题,在商业数据分析中占据重要十分的地位,经典的“啤酒”与“尿片”的故事即来源于此

大家好,又见面了,我是你们的朋友全栈君。

在2006年12月召开的 IEEE 数据挖掘国际会议上(ICDM, International Conference on Data Mining),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参见文献【1】。本博客已经介绍过的位列十大算法之中的算法包括:

  • [1] k-means算法(http://blog.csdn.net/baimafujinji/article/details/50570824)
  • [2] 支持向量机SVM(http://blog.csdn.net/baimafujinji/article/details/49885481)
  • [3] EM算法(http://blog.csdn.net/baimafujinji/article/details/50626088)
  • [4] 朴素贝叶斯算法(http://blog.csdn.net/baimafujinji/article/details/50441927)
  • [5] k k k
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/131022.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号