Numpy中的meshgrid()函数

Numpy中的meshgrid()函数转载自:https://blog.csdn.net/littlehaes/article/details/83543459官方解释:np.meshgrid(*xi,**kwargs)Returncoordinatematricesfromcoordinatevectors.从坐标向量中返回坐标矩阵不够直观直观的例子二维坐标系中,X轴可以取三个值1,2,3,Y轴可以取三…

大家好,又见面了,我是你们的朋友全栈君。

官方解释:

np.meshgrid(*xi, **kwargs)

Return coordinate matrices from coordinate vectors. 从坐标向量中返回坐标矩阵

不够直观

直观的例子

二维坐标系中,X轴可以取三个值 1,2,3, Y轴可以取三个值 7,8, 请问可以获得多少个点的坐标?
显而易见是 6 个:
(1, 7) (2, 7) (3, 7)
(1, 8) (2, 8) (3, 8)

np.meshgrid() 就是干这个的!

#coding:utf-8
import numpy as np
# 坐标向量
a = np.array([1,2,3])
# 坐标向量
b = np.array([7,8])
# 从坐标向量中返回坐标矩阵
# 返回list,有两个元素,第一个元素是X轴的取值,第二个元素是Y轴的取值
res = np.meshgrid(a,b)
#返回结果: [array([ [1,2,3] [1,2,3] ]), array([ [7,7,7] [8,8,8] ])]

同理还可以生成更高维度的坐标矩阵


本文的目的是记录 meshgrid() 的理解过程:

step1. 通过一个示例引入创建网格点矩阵;
step2. 基于步骤1,说明 meshgrid() 的作用;
step3. 详细解读 meshgrid() 的官网定义;

说明:step1 和 2 的数据都是基于笛卡尔坐标系的矩阵,目的是为了方便讨论。

 

step1. 通过一个示例引入创建网格点矩阵;

示例1,创建一个 2 行 3 列的网格点矩阵。

import numpy as np
import matplotlib.pyplot as plt

X = np.array([[0, 0.5, 1],[0, 0.5, 1]])
print("X的维度:{},shape:{}".format(X.ndim, X.shape))
Y = np.array([[0, 0, 0],[1, 1, 1]])
print("Y的维度:{},shape:{}".format(Y.ndim, Y.shape))

plt.plot(X, Y, 'o--')
plt.grid(True)
plt.show()

Numpy中的meshgrid()函数

X矩阵是: [[0. 0.5 1. ], [0. 0.5 1. ]]
Y矩阵是: [[0 0 0], [1 1 1]]

step2. meshgrid() 的作用;

当要描绘的 矩阵网格点的数据量小的时候,可以用上述方法构造网格点坐标数据;

但是如果是一个 (256, 100) 的整数矩阵网格,要怎样构造数据呢?

方法1 : 将 x 轴上的 100 个整数点组成的行向量,重复 256 次,构成 shape(256,100) 的 X 矩阵;将 y 轴上的 256 个整数点组成列向量, 重复 100 次构成 shape(256,100) 的 Y 矩阵

显然方法1 的数据构造过程很繁琐, 也不方便调用, 那么有没有更好的办法呢?
of course!!! 那么 meshgrid() 就显示出它的作用了

使用 meshgrid 方法,你只需要构造一个表示 x 轴上的坐标的向量和一个表示 y 轴上的坐标的向量; 然后作为参数给到 meshgrid(), 该函数就会返回相应维度的两个矩阵;

例如,你想构造一个 2 行 3 列的矩阵网格点, 那么 x 生成一个 shape(3,) 的向量, y 生成一个 shape(2,) 的向量, 将 x, y 传入 meshgrid(), 最后返回的 X , Y 矩阵的 shape(2,3)

示例2,使用 meshgrid() 生成 step1 中的网格点矩阵

x = np.array([0, 0.5, 1])
y = np.array([0,1])

xv,yv = np.meshgrid(x, y)
print("xv的维度:{},shape:{}".format(xv.ndim, xv.shape))
print("yv的维度:{},shape:{}".format(yv.ndim, yv.shape))

plt.plot(xv, yv, 'o--')
plt.grid(True)
plt.show()

Numpy中的meshgrid()函数

示例3,生成一个20行30列的网格点矩阵

x = np.linspace(0,500,30)
print("x的维度:{},shape:{}".format(x.ndim, x.shape))
print(x)
y = np.linspace(0,500,20)
print("y的维度:{},shape:{}".format(y.ndim, y.shape))
print(y)

xv,yv = np.meshgrid(x, y)
print("xv的维度:{},shape:{}".format(xv.ndim, xv.shape))
print("yv的维度:{},shape:{}".format(yv.ndim, yv.shape))

plt.plot(xv, yv, '.')
plt.grid(True)
plt.show()

Numpy中的meshgrid()函数

step3. 详细解读 meshgrid() 的官网定义;
numpy.meshgrid(*xi, **kwargs)
Return coordinate matrices from coordinate vectors.
根据输入的坐标向量生成对应的坐标矩阵

Parameters:
  x1, x2,…, xn : array_like
    1-D arrays representing the coordinates of a grid.
  indexing : {‘xy’, ‘ij’}, optional
    Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. See Notes for more details.
  sparse : bool, optional
    If True a sparse grid is returned in order to conserve memory. Default is False.
  copy : bool, optional
    If False, a view into the original arrays are returned in order to conserve memory.
    Default is True. Please note that sparse=False, copy=False will likely return non-contiguous arrays.
    Furthermore, more than one element of a broadcast array may refer to a single memory location.
    If you need to write to the arrays, make copies first.
Returns:
  X1, X2,…, XN : ndarray
    For vectors x1, x2,…, ‘xn’ with lengths Ni=len(xi) ,
    return (N1, N2, N3,…Nn) shaped arrays if indexing=’ij’
    or (N2, N1, N3,…Nn) shaped arrays if indexing=’xy’
    with the elements of xi repeated to fill the matrix along the first dimension for x1, the second for x2 and so on.

针对 indexing 参数的说明:
indexing 只是影响 meshgrid() 函数返回的矩阵的表示形式,但并不影响坐标点

x = np.array([0, 0.5, 1])
y = np.array([0,1])

xv,yv = np.meshgrid(x, y)
print("xv的维度:{},shape:{}".format(xv.ndim, xv.shape))
print("yv的维度:{},shape:{}".format(yv.ndim, yv.shape))
print(xv)
print(yv)

plt.plot(xv, yv, 'o--')
plt.grid(True)
plt.show()

Numpy中的meshgrid()函数

 

x = np.array([0, 0.5, 1])
y = np.array([0,1])

xv,yv = np.meshgrid(x, y,indexing='ij')
print("xv的维度:{},shape:{}".format(xv.ndim, xv.shape))
print("yv的维度:{},shape:{}".format(yv.ndim, yv.shape))
print(xv)
print(yv)

plt.plot(xv, yv, 'o--')
plt.grid(True)
plt.show()

Numpy中的meshgrid()函数

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/132138.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Java面试-面向对象

    点击上方“全栈程序员社区”,星标公众号 重磅干货,第一时间送达 Q1。什么是多态? 多态被简要描述为“一个接口,许多实现”。多态性是能够在不同上下文中为某事物赋予不同含义或用法的一…

    2021年6月23日
    102
  • 【爷青回系列】使用VMware虚拟机安装Windows XP系统!最详细!「建议收藏」

    【爷青回系列】使用VMware虚拟机安装Windows XP系统!最详细!「建议收藏」目录前言一、安装VMware虚拟机二、XP系统镜像下载三、创建WindowsXP虚拟机写在最后前言最近,肯德基的“田园脆鸡堡”回归了,摩尔庄园也正式“开园”了,爷青回!!!终于!终于!小时候左手田园脆鸡堡,右手摩尔庄园的幸福时刻终于要重现了。事先说明,这不是广告植入,也不是今天分享的重点。下面就由我向大家隆重介绍【爷青回系列】使用VMware虚拟机安装WindowsXP系统!操作环境:Windows10一、安装VMware虚拟机【官方下载地址】【免注册下载地址】由于官方下

    2022年8月16日
    7
  • datagrip永久激活(JetBrains全家桶)

    (datagrip永久激活)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月31日
    489
  • 贝叶斯优化python包_贝叶斯优化

    贝叶斯优化python包_贝叶斯优化万壑松风知客来,摇扇抚琴待留声1.文起本篇文章记录通过Python调用第三方库,从而调用使用了贝叶斯优化原理的Hyperopt方法来进行超参数的优化选择。具体贝叶斯优化原理与相关介绍将在下一次文章中做较为详细的描述,可以参考这里。Hyperopt是Python的几个贝叶斯优化库中的一个。它使用TreeParzenEstimator(TPE),其它Python库还包括了S…

    2025年8月15日
    5
  • stream和streaming_parallelStream

    stream和streaming_parallelStreamStream和parallelStream一.什么是Stream?Stream是在Java8新增的特性,普遍称其为流;它不是数据结构也不存放任何数据,其主要用于集合的逻辑处理。二.和Iterator的区别Iterator做为迭代器,其按照一定的顺序迭代遍历集合中的每一个元素,并且对每个元素进行指定的操作。而Stream在此基础上还可以将这种操作并行化,利用多核处理器的优势快…

    2022年4月19日
    116
  • mysql 前缀索引_MySQL前缀索引

    mysql 前缀索引_MySQL前缀索引有时候需要索引很长的字符字段列,这会增加索引的存储空间以及降低索引的查询效率,一种策略是可以使用哈希索引,还有一种就是使用前缀索引。前缀索引是选择字符列的前n个字符作为索引,这样可以大大节约索引空间,从而提高索引效率。前缀索引的选择性使用前缀索引,在一些场景下可能使得重复的索引值变多,索引的选择性变低,查找时需要过滤更多的行,因此建立前缀索引也要考虑前缀的索引选择性不能太低。Tips:主键索引和唯…

    2022年5月10日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号