BatchNorm2d原理、作用及其pytorch中BatchNorm2d函数的参数讲解

BatchNorm2d原理、作用及其pytorch中BatchNorm2d函数的参数讲解BN原理、作用:函数参数讲解:BatchNorm2d(256,eps=1e-05,momentum=0.1,affine=True,track_running_stats=True)1.num_features:一般输入参数为batch_sizenum_featuresheight*width,即为其中特征的数量,即为输入BN层的通道数;2.eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5,避免分母为0;3.momentum:一个用于运行过程中均值和方差的一个估

大家好,又见面了,我是你们的朋友全栈君。

BN原理、作用:

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

函数参数讲解:

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

1.num_features:一般输入参数为batch_sizenum_featuresheight*width,即为其中特征的数量,即为输入BN层的通道数;
2.eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5,避免分母为0;
3.momentum:一个用于运行过程中均值和方差的一个估计参数(我的理解是一个稳定系数,类似于SGD中的momentum的系数);
4.affine:当设为true时,会给定可以学习的系数矩阵gamma和beta
一般来说pytorch中的模型都是继承nn.Module类的,都有一个属性trainning指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层或者Dropout层。通常用model.train()指定当前模型model为训练状态,model.eval()指定当前模型为测试状态。
同时,BN的API中有几个参数需要比较关心的,一个是affine指定是否需要仿射,还有个是track_running_stats指定是否跟踪当前batch的统计特性。容易出现问题也正好是这三个参数:trainning,affine,track_running_stats。
其中的affine指定是否需要仿射,也就是是否需要上面算式的第四个,如果affine=False则γ=1,β=0,并且不能学习被更新。一般都会设置成affine=True。
trainning和track_running_stats,track_running_stats=True表示跟踪整个训练过程中的batch的统计特性,得到方差和均值,而不只是仅仅依赖与当前输入的batch的统计特性。相反的,如果track_running_stats=False那么就只是计算当前输入的batch的统计特性中的均值和方差了。当在推理阶段的时候,如果track_running_stats=False,此时如果batch_size比较小,那么其统计特性就会和全局统计特性有着较大偏差,可能导致糟糕的效果。
如果BatchNorm2d的参数track_running_stats设置False,那么加载预训练后每次模型测试测试集的结果时都不一样;track_running_stats设置为True时,每次得到的结果都一样。
running_mean和running_var参数是根据输入的batch的统计特性计算的,严格来说不算是“学习”到的参数,不过对于整个计算是很重要的。BN层中的running_mean和running_var的更新是在forward操作中进行的,而不是在optimizer.step()中进行的,因此如果处于训练中泰,就算不进行手动step(),BN的统计特性也会变化。

model.train() #处于训练状态
for data , label in self.dataloader:
    pred =model(data)  #在这里会更新model中的BN统计特性参数,running_mean,running_var
    loss=self.loss(pred,label)
    #就算不进行下列三行,BN的统计特性参数也会变化
    opt.zero_grad()
    loss.backward()
    opt.step()

这个时候,要用model.eval()转到测试阶段,才能固定住running_mean和running_var,有时候如果是先预训练模型然后加载模型,重新跑测试数据的时候,结果不同,有一点性能上的损失,这个时候基本上是training和track_running_stats设置的不对。
如果使用两个模型进行联合训练,为了收敛更容易控制,先预训练好模型model_A,并且model_A内还有若干BN层,后续需要将model_A作为一个inference推理模型和model_B联合训练,此时希望model_A中的BN的统计特性量running_mean和running_var不会乱变化,因此就需要将model_A.eval()设置到测试模型,否则在trainning模式下,就算是不去更新模型的参数,其BN都会变化,这将导致和预期不同的结果。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/132951.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 《Linux内核设计与实现》读书笔记(十六)- 页高速缓存和页回写

    《Linux内核设计与实现》读书笔记(十六)- 页高速缓存和页回写

    2022年3月7日
    46
  • html静态网页设计代码_静态网页设计心得

    html静态网页设计代码_静态网页设计心得第一周:HTML写静态网页1.HTML理论介绍及常用格式(1).HTML主体格式<!DOCTYPEhtml><html> <head>  <metacharset="utf-8"/>  <title></title> </head> <body>   &

    2022年9月21日
    3
  • 编程路上必定要知道的数据库语言SPL

    编程路上必定要知道的数据库语言SPL要说清这个目标,先要理解数据库是做什么的。数据库这个软件,名字中有个“库”字,会让人觉得它主要是为了存储的。其实不然,数据库实现的重要功能有两条:计算、事务!也就是我们常说的OLAP和OLTP,数据库的存储都是为这两件事服务的,单纯的存储并不是数据库的目标。我们知道,SQL是目前数据库的主流语言。那么,用SQL做这两件事是不是很方便呢?事务类功能主要解决数据在写入和读出时要保持的一致性,实现这件事的难度并不小,但对于应用程序的接口却非常简单,用于操纵数据库读写的代码也很简单。如果假定目前关系数据库的逻辑存储

    2022年10月6日
    4
  • signed apk error [WifiManagerLeak]

    signed apk error [WifiManagerLeak]

    2021年9月30日
    49
  • 设计模式——行为型模式

    设计模式——行为型模式一 目录 1 策略模式 Strategy 2 状态模式 State 3 责任链模式 ChainOfRespo 4 解释器模式 Interpreter 5 命令模式 Command 6 观察者模式 Observer 7 备忘录模式 Memento 8 迭代器模式 Iterator 9 模板方法模式 TemplateMeth 10 访问者模式 Visit

    2025年10月25日
    4
  • LR模型推导_索洛模型的简单推导

    LR模型推导_索洛模型的简单推导概念 逻辑回归假设数据服从伯努利分布,通过极大化似然函数方法,运用梯度下降来求解参数,来达到将数据二分目的 sigmoid函数 sigmoid函数:,y为正样本的概率,1-y为负样本的概率 LR模型推导 设 另 那么对应 极大似然估计 似然函数 对数似然函数就是 将代入公式 对参数求偏导 参数更新 …

    2022年10月13日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号