【数据结构】链表的原理及java实现

【数据结构】链表的原理及java实现一:单向链表基本介绍链表是一种数据结构,和数组同级。比如,Java中我们使用的ArrayList,其实现原理是数组。而LinkedList的实现原理就是链表了。链表在进行循环遍历时效率不高,但是插入和删除时优势明显。下面对单向链表做一个介绍。单向链表是一种线性表,实际上是由节点(Node)组成的,一个链表拥有不定数量的节点。其数据在内存中存储是不连续的,它存储的数据分散在内存中,每个结点只能也只有它

大家好,又见面了,我是你们的朋友全栈君。

一:单向链表基本介绍

链表是一种数据结构,和数组同级。比如,Java中我们使用的ArrayList,其实现原理是数组。而LinkedList的实现原理就是链表了。链表在进行循环遍历时效率不高,但是插入和删除时优势明显。下面对单向链表做一个介绍。

单向链表是一种线性表,实际上是由节点(Node)组成的,一个链表拥有不定数量的节点。其数据在内存中存储是不连续的,它存储的数据分散在内存中,每个结点只能也只有它能知道下一个结点的存储位置。由N各节点(Node)组成单向链表,每一个Node记录本Node的数据及下一个Node。向外暴露的只有一个头节点(Head),我们对链表的所有操作,都是直接或者间接地通过其头节点来进行的。
这里写图片描述
上图中最左边的节点即为头结点(Head),但是添加节点的顺序是从右向左的,添加的新节点会被作为新节点。最先添加的节点对下一节点的引用可以为空。引用是引用下一个节点而非下一个节点的对象。因为有着不断的引用,所以头节点就可以操作所有节点了。
下图描述了单向链表存储情况。存储是分散的,每一个节点只要记录下一节点,就把所有数据串了起来,形成了一个单向链表。
这里写图片描述
节点(Node)是由一个需要储存的对象及对下一个节点的引用组成的。也就是说,节点拥有两个成员:储存的对象、对下一个节点的引用。下面图是具体的说明:

这里写图片描述

二、单项链表的实现

package com.zjn.LinkAndQueue;

/** * 自定义链表设计 * * @author zjn * */
public class MyLink { 
   
    Node head = null; // 头节点

    /** * 链表中的节点,data代表节点的值,next是指向下一个节点的引用 * * @author zjn * */
    class Node {
        Node next = null;// 节点的引用,指向下一个节点
        int data;// 节点的对象,即内容

        public Node(int data) {
            this.data = data;
        }
    }

    /** * 向链表中插入数据 * * @param d */
    public void addNode(int d) {
        Node newNode = new Node(d);// 实例化一个节点
        if (head == null) {
            head = newNode;
            return;
        }
        Node tmp = head;
        while (tmp.next != null) {
            tmp = tmp.next;
        }
        tmp.next = newNode;
    }

    /** * * @param index:删除第index个节点 * @return */
    public boolean deleteNode(int index) {
        if (index < 1 || index > length()) {
            return false;
        }
        if (index == 1) {
            head = head.next;
            return true;
        }
        int i = 1;
        Node preNode = head;
        Node curNode = preNode.next;
        while (curNode != null) {
            if (i == index) {
                preNode.next = curNode.next;
                return true;
            }
            preNode = curNode;
            curNode = curNode.next;
            i++;
        }
        return false;
    }

    /** * * @return 返回节点长度 */
    public int length() {
        int length = 0;
        Node tmp = head;
        while (tmp != null) {
            length++;
            tmp = tmp.next;
        }
        return length;
    }

    /** * 在不知道头指针的情况下删除指定节点 * * @param n * @return */
    public boolean deleteNode11(Node n) {
        if (n == null || n.next == null)
            return false;
        int tmp = n.data;
        n.data = n.next.data;
        n.next.data = tmp;
        n.next = n.next.next;
        System.out.println("删除成功!");
        return true;
    }

    public void printList() {
        Node tmp = head;
        while (tmp != null) {
            System.out.println(tmp.data);
            tmp = tmp.next;
        }
    }

    public static void main(String[] args) {
        MyLink list = new MyLink();
        list.addNode(5);
        list.addNode(3);
        list.addNode(1);
        list.addNode(2);
        list.addNode(55);
        list.addNode(36);
        System.out.println("linkLength:" + list.length());
        System.out.println("head.data:" + list.head.data);
        list.printList();
        list.deleteNode(4);
        System.out.println("After deleteNode(4):");
        list.printList();
    }
}

三、链表相关的常用操作实现方法

1. 链表反转

/** * 链表反转 * * @param head * @return */
    public Node ReverseIteratively(Node head) {
        Node pReversedHead = head;
        Node pNode = head;
        Node pPrev = null;
        while (pNode != null) {
            Node pNext = pNode.next;
            if (pNext == null) {
                pReversedHead = pNode;
            }
            pNode.next = pPrev;
            pPrev = pNode;
            pNode = pNext;
        }
        this.head = pReversedHead;
        return this.head;
    }

2. 查找单链表的中间节点

采用快慢指针的方式查找单链表的中间节点,快指针一次走两步,慢指针一次走一步,当快指针走完时,慢指针刚好到达中间节点。

/** * 查找单链表的中间节点 * * @param head * @return */
    public Node SearchMid(Node head) {
        Node p = this.head, q = this.head;
        while (p != null && p.next != null && p.next.next != null) {
            p = p.next.next;
            q = q.next;
        }
        System.out.println("Mid:" + q.data);
        return q;
    }

3. 查找倒数第k个元素

采用两个指针P1,P2,P1先前移K步,然后P1、P2同时移动,当p1移动到尾部时,P2所指位置的元素即倒数第k个元素 。

/** * 查找倒数 第k个元素 * * @param head * @param k * @return */
    public Node findElem(Node head, int k) {
        if (k < 1 || k > this.length()) {
            return null;
        }
        Node p1 = head;
        Node p2 = head;
        for (int i = 0; i < k; i++)// 前移k步
            p1 = p1.next;
        while (p1 != null) {
            p1 = p1.next;
            p2 = p2.next;
        }
        return p2;
    }

4. 对链表进行排序

/** * 排序 * * @return */
    public Node orderList() {
        Node nextNode = null;
        int tmp = 0;
        Node curNode = head;
        while (curNode.next != null) {
            nextNode = curNode.next;
            while (nextNode != null) {
                if (curNode.data > nextNode.data) {
                    tmp = curNode.data;
                    curNode.data = nextNode.data;
                    nextNode.data = tmp;
                }
                nextNode = nextNode.next;
            }
            curNode = curNode.next;
        }
        return head;
    }

5. 删除链表中的重复节点

/** * 删除重复节点 */
    public void deleteDuplecate(Node head) {
        Node p = head;
        while (p != null) {
            Node q = p;
            while (q.next != null) {
                if (p.data == q.next.data) {
                    q.next = q.next.next;
                } else
                    q = q.next;
            }
            p = p.next;
        }

    }

6. 从尾到头输出单链表,采用递归方式实现

/** * 从尾到头输出单链表,采用递归方式实现 * * @param pListHead */
    public void printListReversely(Node pListHead) {
        if (pListHead != null) {
            printListReversely(pListHead.next);
            System.out.println("printListReversely:" + pListHead.data);
        }
    }

7. 判断链表是否有环,有环情况下找出环的入口节点

/** * 判断链表是否有环,单向链表有环时,尾节点相同 * * @param head * @return */
    public boolean IsLoop(Node head) {
        Node fast = head, slow = head;
        if (fast == null) {
            return false;
        }
        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
            if (fast == slow) {
                System.out.println("该链表有环");
                return true;
            }
        }
        return !(fast == null || fast.next == null);
    }

    /** * 找出链表环的入口 * * @param head * @return */
    public Node FindLoopPort(Node head) {
        Node fast = head, slow = head;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
            if (slow == fast)
                break;
        }
        if (fast == null || fast.next == null)
            return null;
        slow = head;
        while (slow != fast) {
            slow = slow.next;
            fast = fast.next;
        }
        return slow;
    }
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/133381.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • fetch_array()与fetch_assoc()的用法

    fetch_array()与fetch_assoc()的用法

    2021年11月4日
    42
  • 层次分析法(AHP)详细步骤

    层次分析法(AHP)详细步骤1.算法简介

    2022年6月27日
    38
  • 小学计算机画线反思,小学四年级数学上册《画平行线》教学反思[通俗易懂]

    小学计算机画线反思,小学四年级数学上册《画平行线》教学反思[通俗易懂]小学四年级数学上册《画平行线》教学反思过去,对于平行线的画法,我也感到很不理解,特别是用尺子移来移去,实在太麻烦,对于平行线的理解,学生只知道“在同一平面内不相交的两条直线是平行线”,而不相交的实质是“两条直线间的距离是固定的.”学生并没有直观感受。正是基于这样的认识画平行线的教学只能由教师传授给学生,他们也只能是机械的模仿,也就是简单的完成操作工的活动,没有任何思维的含量,不能算真正意义上的脑力…

    2022年9月17日
    0
  • 单片机p0=0xfe中0x是什么意思_c语言中&是什么符号,代表什么

    单片机p0=0xfe中0x是什么意思_c语言中&是什么符号,代表什么相信很多人对于0x80(单片机0x80什么意思)并不是非常的了解,因此小编在这里为您详解的讲解一下相关信息!0x80这是十六进制数,变成十进制数为-128,因为char型在C语言中范围为-128~127,并不是0乘以80,c语言中乘以用*,例如0*80,表示0乘以80。扩展资料:C语言是一.0x8110000000或00000001这是区分汉字编码的汉字编码区别于其他编码的标志就是汉字编码的最…

    2022年9月13日
    0
  • Edgex foundry(Ireland-2.0版本)- Security 模式启动过程分析security-bootstrapper[通俗易懂]

    Edgex foundry(Ireland-2.0版本)- Security 模式启动过程分析security-bootstrapper[通俗易懂]EdegxFoundry:运行再边缘侧开源的,厂商中立的,灵活可定制的,支持交互操作的软件平台。可与设备、传感器、执行器和其他物联网对象的物理设备进行交互。简单地说,EdgeX是一种边缘中间件平台,服务于信息系统和IOT设备的感知操作(有关edgex的更多介绍,可查看edgex的的官方文档Introduction-EdgeXFoundryDocumentation)。Edegx官方提供了基于docker,可快速启动dockercompose文件,让用户可以快速体验到edgex提…

    2022年7月20日
    22
  • Ubuntu安装Mininet教程

    Ubuntu安装Mininet教程1 安装 Mininet 安装 gitsudoapt getinstallgi 下载代码 gitclonegit github com mininet mininet 然后进入 mininet util 目录 执行安装命令 a 表示全部安装 cdmininetcdu install sh a 安装完毕会输出 EnjoyMininet

    2025年7月5日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号