大数据建模流程之数据处理[通俗易懂]

大数据建模流程之数据处理[通俗易懂]原文链接数据是建模的基础,也是研究事物发展规律的材料。数据本身的可信度和处理的方式将直接决定模型的天花板在何处。一个太过杂乱的数据,无论用多么精炼的模型都无法解决数据的本质问题,也就造成了模型的效果不理想的效果。这也是我们目前所要攻克的壁垒。但是,目前我们市场对的数据或者科研的数据并不是完全杂乱无章的,基本都是有规律可循的,因此,用模型算法去进行科学的分析,可以主观情绪对决策的影响。所以数据是非常重要的一部分。那么,接下来我们就详细说一下数据的处理与分析。一.数据的基本特征当看到数据的时候,首要做的并

大家好,又见面了,我是你们的朋友全栈君。

原文链接
数据是建模的基础,也是研究事物发展规律的材料。数据本身的可信度和处理的方式将直接决定模型的天花板在何处。一个太过杂乱的数据,无论用多么精炼的模型都无法解决数据的本质问题,也就造成了模型的效果不理想的效果。这也是我们目前所要攻克的壁垒。但是,目前我们市场对的数据或者科研的数据并不是完全杂乱无章的,基本都是有规律可循的,因此,用模型算法去进行科学的分析,可以主观情绪对决策的影响。所以数据是非常重要的一部分。那么,接下来我们就详细说一下数据的处理与分析。
一.数据的基本特征
当看到数据的时候,首要做的并不是进行清洗或者特征工程,而是要观察数据所呈现的基本状态,以及进行数据与任务的匹配,这就需要我们之前所提到的业务常识与数据敏感度的能力了,只有数据完整的分析完整,才能够更为精准的做符合需求的特征工程(数据处理)的工作。数据的基本特征分析主要从以下几个方面进行:
在这里插入图片描述
1.确定类型:数据集的类型包括文本,音频,视频,图像,数值等多种形式交织而成,但是传入模型中的都是以数值形式呈现的,所以确定数据的类型,才可以确定用什么方法进行量化处理。
2.验证可靠度:由于数据的收集的方式不尽相同,数据来源的途径多种多样。所以数据的可信度判断也显得尤为重要。而数据可靠性校验得方法非常多。例如:根据收集途径判断,如果调查问卷也可根据问卷设计得可靠度进行判断,当然转化为数值后也可辅助一些模型进行精细校验等。采用何种方式,取决于获取数据得方式,数据类型以及项目得需求。
3.样本定义:需要确定样本得对应得每一个特征属性的内容是什么。例如:样本的容量,样本的具体内容,样本所包含的基本信息等。
4.任务匹配:在任务分析中我们把项目拆分成了小的子问题,这些问题有分类,回归,关联关系等。也就是每个问题的所达成的目标是不一样的,那么我们要从数据集中筛选出符合子问题的数据,也就是选好解决问题的原料,很多情况下是靠你的数据敏感度和业务常识进行判断的。
5.数据集的划分:由于模型搭建完成之后有一个训练与验证评估的过程,而目前最为简单的一种验证手段就是就是交叉验证,因此我们需要将数据集拆分成训练集和测试集,这一步仅仅确定训练集和测试集的比例关系,例如:70%的数据用于训练,30%的数据用于测试。

二. 数据的清洗与处理
数据的清洗是一件非常繁琐且耗费时间的事情,基本可以占到一个工程的30%到50%的时间。并且数据的清洗很难有规律可循,基本上依托于你对数据的基本分析与数据敏感度。当然,当你看的数据够多,数据的清洗的经验也就越多,会为你今后哦搭建模型提供很多遍历,我们这里提供一些常见的清洗的点。
在这里插入图片描述
A. 数据的预处理:
1.由于数据的来源大多数是来源于多个途径,因此需要对数据进行合并;
2.选择数据处理工具:数据库或者python,spss等。
3.通过人工的方式去观察数据可能出现的问题。
B.清洗异常样本数据
清洗异常数据样本需要考虑到方方面面,通常情况下我们从以下方面:
1.处理格式或者内容错误:
首先,观察时间,日期,数值等是否出现格式不一致,进行修改整理;其次,注意开头,或者中间部分是否存在异常值;最后,看字段和内容是否一致。例如,姓名的内容是男,女。
2.逻辑错误清洗:
去重:通常我们收集的数据集中有一些数据是重复的,重复的数据会直接影响我们模型的结果,因此需要进行去重操作;
去除或者替换不合理的值:例如年龄突然某一个值是-1,这就属于不合理值,可用正常值进行替换或者去除;
修改矛盾内容:例如身份证号是91年的,年龄35岁,显然不合理,进行修改或者删除。
3.去除不要的数据:根据业务需求和业务常识去掉不需要的字段
4.关联性错误验证:由于数据来源是多个途径,所以存在一个id,进行不同的数据收集,可通过,id或者姓名进行匹配合并。

C.数据不平衡处理:改问题主要出现在分类模型中,由于正例与负例之间样本数量差别较大,造成分类结果样本量比较少的类别会大部分分错。因此需要进行数据不平衡处理。常用的方法有:上采样,下采样,数据权重复制,异常点检测等。不在一一阐述了。
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/133439.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Faster-rcnn详解「建议收藏」

    Faster-rcnn详解「建议收藏」论文题目:FasterR-CNN:TowardsReal-TimeObjectDetectionwithRegionProposalNetworks论文链接:论文链接论文代码:Matlab版本点击此处,Python版本点击此处作为一个目标检测领域的baseline算法,Faster-rcnn值得你去仔细理解里面的细节,如果你能深入的了解这些,我相信你会受益匪浅。…

    2022年10月4日
    0
  • ElasticSearch集群搭建图文解析

    ElasticSearch集群搭建图文解析/前言/      ElasticSearch作为一个分布式搜索引擎有着广泛的应用场景,而搜索服务在在一个项目中的权重还是比较高的,所以我们要想办法去提高搜索服务的可用性,这就是ElasticSearch集群的作用,为搜索服务提供高可用的特性       何为高可用呢,其实就是字面意思,假设我们的搜索服务可以一直不停的提供服务,那么高可用性就是100%,

    2022年10月13日
    0
  • 从TCP协议的原理来谈谈rst复位攻击[通俗易懂]

    从TCP协议的原理来谈谈rst复位攻击[通俗易懂]在谈RST攻击前,必须先了解TCP:如何通过三次握手建立TCP连接、四次握手怎样把全双工的连接关闭掉、滑动窗口是怎么传输数据的、TCP的flag标志位里RST在哪些情况下出现。下面我会画一些尽量简化的图来表达清楚上述几点,之后再了解下RST攻击是怎么回事。1、TCP是什么?TCP是在IP网络层之上的传输层协议,用于提供port到port面向连接的可靠的字节流传输。我来用土语解释下上

    2022年9月27日
    0
  • CPU型号后缀含义

    CPU型号后缀含义CPU后缀是制Y:超低电压移动版2113(平板电脑、混合本)的5261CPU;CPU后缀4102是U:低电压版移动处理1653器。intelCPU后缀的意思如下:“K”代表该处理器是不锁倍频桌面级CPU;“S”代表该处理器是功耗降至65W的低功耗版桌面级CPU;“T”代表该处理器是功耗降至45W的节能版桌面级CPU;“M”代表该处理器是功耗低于35W的双核移动CPU;“QM”代表该处理器是功耗为45W的四核移动CPU;“XM”代表该处理器是至尊版移动处理器;“U”代表该处理器是低电压版

    2022年5月20日
    44
  • android 4怎么打开usb调试?「建议收藏」

    android 4怎么打开usb调试?「建议收藏」手机连接电脑,刷机,等都需要打开手机USB调试模式,你才能进行操作的。所以买了手机建议都要打开这个USB调试,手机锁屏密码忘记也需要打开这个。这个比较重要。工具/原料手机安卓android系统方法/步骤打开自己的手机找到《设置》点击,进入以下图例。在点击《关于手机》

    2022年9月12日
    0
  • nginx返回400状态码

    nginx返回400状态码1.后端地址正常返回200;2.确认是url加上参数后,nginx返回400;解决方案在proxy_pass的跳转路径后新增$request_urilocation/test/{proxy_passhttp://192.168.1.11$request_uri;}

    2025年7月9日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号