(深度学习)Pytorch之dropout训练

(深度学习)Pytorch之dropout训练(深度学习)Pytorch学习笔记之dropout训练Dropout训练实现快速通道:点我直接看代码实现Dropout训练简介在深度学习中,dropout训练时我们常常会用到的一个方法——通过使用它,我们可以可以避免过拟合,并增强模型的泛化能力。通过下图可以看出,dropout训练训练阶段所有模型共享参数,测试阶段直接组装成一个整体的大网络:那么,我们在深度学习的有力工具——Pytor…

大家好,又见面了,我是你们的朋友全栈君。

(深度学习)Pytorch学习笔记之dropout训练

Dropout训练实现快速通道:点我直接看代码实现

Dropout训练简介

在深度学习中,dropout训练时我们常常会用到的一个方法——通过使用它,我们可以可以避免过拟合,并增强模型的泛化能力。

通过下图可以看出,dropout训练训练阶段所有模型共享参数,测试阶段直接组装成一个整体的大网络:
在这里插入图片描述

那么,我们在深度学习的有力工具——Pytorch中如何实现dropout训练呢?

易错大坑

网上查找到的很多实现都是这种形式的:

        out = F.dropout(out, p=0.5)

这种形式的代码非常容易误导初学者,给人带来很大的困扰:

  • 首先,这里的F.dropout实际上是torch.nn.functional.dropout的简写(很多文章都没说清这一点,就直接给个代码),我尝试了一下我的Pytorch貌似无法使用,可能是因为版本的原因。
  • 其次,torch.nn.functional.dropout()还有个大坑:F.dropout()相当于引用的一个外部函数,模型整体的training状态变化也不会引起F.dropout这个函数的training状态发生变化。因此,上面的代码实质上就相当于out = out

因此,如果你非要使用torch.nn.functional.dropout的话,推荐的正确方法如下(这里默认你已经import torch.nn as nn了):

       out = nn.functional.dropout(out, p=0.5, training=self.training)

推荐代码实现方法

这里更推荐的方法是:nn.Dropout(p),其中p是采样概率。nn.Dropout实际上是对torch.nn.functional.dropout的一个包装, 也将self.training传入了其中,可以有效避免前面所说的大坑。

下面给出一个三层神经网络的例子:

import torch.nn as nn


input_size = 28 * 28   
hidden_size = 500   
num_classes = 10    


# 三层神经网络
class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 输入层到影藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)  # 影藏层到输出层
        self.dropout = nn.Dropout(p=0.5)  # dropout训练

    def forward(self, x):
        out = self.fc1(x)
        out = self.dropout(out)
        out = self.relu(out)
        out = self.fc2(out)
        return out
   

model = NeuralNet(input_size, hidden_size, num_classes)
model.train()
model.eval()

另外还有一点需要说明的是,训练阶段随机采样时需要用model.train(),而测试阶段直接组装成一个整体的大网络时需要使用model.eval():

  • 如果你二者都没使用的话,默认情况下实际上是相当于使用了model.train(),也就是开启dropout随机采样了——这样你如果你是在测试的话,准确率可能会受到影响。
  • 如果你不希望开启dropout训练,想直接以一个整体的大网络来训练,不需要重写一个网络结果,而只需要在训练阶段开启model.eval()即可。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/133466.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Oracle 中的视图理解

    Oracle 中的视图理解

    2021年8月19日
    67
  • list转json字符串再转回list

    list转json字符串再转回listList<String>words=newArrayList<>();words.add(“好汉”);words.add(“壮士”);StringwordsJson=JsonUtil.javaBeanToJson(words);List<String>list=JsonUtil.jsonArrayToList(wordsJson,Stri…

    2022年10月17日
    3
  • Nginx的默认端口是_https默认端口

    Nginx的默认端口是_https默认端口我们前面一篇说了nginx的默认端口是80,可是空说无凭,我们用事实来说话。我们首先用whereisnginx.conf来看一下哪些目录里面有nginx.conf文件,我们看到了一共有6个目录,这里是应该分别到这六个文件里面去看一下,但是由于我们提前找过了,是/etc/nginx这个目录,所以我们就直接到该目录下面,即采用cd来切换目录,下图已经把这个文件标出来了。接着,我们查看…

    2025年10月8日
    3
  • 音视频技术开发周刊 67期

    音视频技术开发周刊 67期

    2021年6月13日
    137
  • hive优化大全-一篇就够了[通俗易懂]

    hive优化大全-一篇就够了[通俗易懂]1.概述  在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题。下面开始本篇文章的优化介绍。2.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题?数据量大不是问题,数据倾斜是个问题。jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长。原因是mapreduce作业初始化的时间是…

    2022年4月20日
    39
  • GitHub开源的10个超棒后台管理面板

    GitHub开源的10个超棒后台管理面板项目开发中后台管理平台必不可少,但是从零搭建一套多样化后台管理并不容易,目前有许多开源、免费、样式丰富的后台管控面板,深夜学习简书上一位大神的博文,共总结10项优秀后台管理控制面板(9个GitHub项目,1个在线UI框架)。

    2022年6月25日
    44

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号