VIF 多重共线性膨胀因子

VIF 多重共线性膨胀因子方差膨胀系数(varianceinflationfactor,VIF)是衡量多元线性回归模型中复(多重)共线性严重程度的一种度量。它表示回归系数估计量的方差与假设自变量间不线性相关时方差相比的比值。多重共线性是指自变量之间存在线性相关关系,即一个自变量可以是其他一个或几个自变量的线性组合。若存在多重共线性,计算自变量的偏回归系数时矩阵不可逆。其表现主要有:整个模型的方差分析结果与各个自变量的回归系数的检验结果不一致,专业判断有统计学意义的自变量检验结果却无意义,自变量的系数或符号与实际情况严重不符等

大家好,又见面了,我是你们的朋友全栈君。

方差膨胀系数(variance inflation factor,VIF)是衡量多元线性回归模型中复 (多重)共线性严重程度的一种度量。它表示回归系数估计量的方差与假设自变量间不线性相关时方差相比的比值。

多重共线性是指自变量之间存在线性相关关系,即一个自变量可以是其他一个或几个自变量的线性组合。若存在多重共线性,计算自变量的偏回归系数时矩阵不可逆。其表现主要有:整个模型的方差分析结果与各个自变量的回归系数的检验结果不一致,专业判断有统计学意义的自变量检验结果却无意义,自变量的系数或符号与实际情况严重不符等。 检验方法主要有:容忍度(Tolerance)和方差膨胀系数(Variance inflation factor,VIF)。其中最常用的是VIF,计算公式为: 在这里插入图片描述
VIF的取值大于1。VIF值越接近于1,多重共线性越轻,反之越重。当多重共线性严重时,应采取适当的方法进行调整 [3] 。容忍度的值界于0至1之间,当容忍度值较小时,表示此自变量与其他自变量之间存在共线性。容忍度这个变量回归系数的估计值不够稳定,则回归系数的计算值也会有很大误差。方差膨胀系数是容忍度的倒数,VIF越大,表示自变量的容忍度越小,越有共线性问题。

通常以10作为判断边界。当VIF<10,不存在多重共线性;当10<=VIF<100,存在较强的多重共线性;当VIF>=100, 存在严重多重共线性。

例子

from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from statsmodels.stats.outliers_influence import variance_inflation_factor
import numpy as np
import pandas as pd
min_max_scaler = MinMaxScaler()
iris = load_iris()
iris_scaler = min_max_scaler.fit_transform(iris.data)
iris_scaler = pd.DataFrame(iris_scaler)
iris_scaler['target'] = iris.target
X = np.matrix(iris_scaler)
VIF_list = [variance_inflation_factor(X, i) for i in range(X.shape[1])]
print(VIF_list)

返回值为

[28.06795814087517,
 3.80566826039568,
 85.84941787221807,
 60.42475320136888,
 35.615649563661286]
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/134010.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号