Halcon—Realsense相机标定+手眼标定[通俗易懂]

Halcon—Realsense相机标定+手眼标定[通俗易懂]使用软件:Halcon18.05(默认安装好任一版halcon)使用设备:IntelRealsense435+AUBO机械臂完成功能:相机标定、eye-in-hand手眼标定1.准备标定板如果没有标定板:1.窗口–打开算子窗口–gen_caltab设置XNum,YNum—圆点个数,X和Y方向圆点个数圆点直径=MarkDist×DiameterRatio间距为MarkDist…

大家好,又见面了,我是你们的朋友全栈君。

使用软件:Halcon18.05(默认安装好任一版halcon)
使用设备:Intel Realsense 435+AUBO机械臂
完成功能:相机标定、eye-in-hand手眼标定

1.准备标定板

1.1如果没有标定板:

1.1.1窗口–打开算子窗口–gen_caltab
设置XNum,YNum—圆点个数,X和Y方向圆点个数
圆点直径=MarkDist × DiameterRatio
间距为MarkDist(单位为米)
caltab.descr是标定板描述文件
caltab.ps为标定板生成文件,没有ps用Adobe PDF打开就能看到如下图1-2所示的标定板,可以直接打印。
如果买了标定板直接用标定板的数据就行,但还是需要用这个生成一个标定板的描述文件,也就是caltab.descr
图1
点filename.write可以看到保存路径
标定板图1-2

1.1.2.点插入,运行,在刚刚的保存路径下找到生成的caltab.descr

1.2有标定板

按照已有标定板尺寸生成caltab.descr——标定板描述文件,之后操作与1.1.2相同

2.相机标定

助手–打开新的Calibration
在描述文件地方插入刚刚生成的caltab.descr
在这里插入图片描述
点击标定,如下图所示,如果有图片直接在这里点击加载调用已拍摄完成的图片,移除掉识别错误的图片
没有图片就先连接相机,之后先点击图像采集助手,再采集图片,实时采集能看到识别出点的图片时再点采集按钮。
在这里插入图片描述
在结果中摄像机参数需要记录下来,之后会用到,摄像机位姿需要点击“保存”保存成 .dat 格式的文件
在这里插入图片描述

3.手眼标定

标定板不动,移动机械臂,拍摄15+张图片,覆盖多个位姿,并记录每张图片拍摄时机械臂的位姿(包括X,Y,Z,RX,RY,RZ六个)
生成机械臂位姿dat文件,打开默认路径下的movingcam_robot_pose_xx.dat,直接修改
我的路径:
C:\Users\Public\Documents\MVTec\HALCON-18.05-Progress\examples\solution_guide\3d_vision\hand_eye

在这里插入图片描述
movingcam_robot_pose_xx.dat内容如下:
对照自己记录的机械臂位姿进行修改,一定要一一对应


# Used representation type:
f 2

# Rotation angles [deg] or Rodriguez-vector:
r 180.0 0.0 75.0

# Translational vector (x y z [m]):
t 0.569269 -0.152535 -0.160

修改ImageNameStart(图片存储位置)和CalTabFile(标定板描述文件位置)的位置

ImageNameStart := '3d_machine_vision/923-0/0000'

改成自己的标定板描述文件位置

CalTabFile := 'C:/Users/alw/Desktop/caltab.descr'

附上全部代码

* 
* This example explains how to use the hand eye calibration for the case where
* the camera is attached to the robot tool and the calibration object
* is stationary with respect to the robot. The robot positions the
* camera with respect to the calibration plate.
* In this case, the goal of the hand eye calibration is to determine two unknown poses:
* - the pose of the robot base in the coordinate system
*   of the calibration object (CalObjInBasePose).
* - the pose of the camera in the coordinate system of the
*   tool center point (ToolInCamPose).
* Theoretically, as input the method needs at least 3 poses of the
* calibration object in the camera coordinate system.
* However, it is recommended to use at least 10 Poses.
* The corresponding poses of the robot tool in the robot base coordinate system
* (ToolInBasePose) changes for each calibration image,
* because it describes the pose of the robot moving the camera.
* The poses of the calibration object are obtained from images of the
* calibration object recorded with the camera attached to the robot.
* To obtain good calibration results, it its essential to position
* the camera with respect to the calibration object so that the object appears
* tilted in the image.
* After the hand eye calibration, the computed transformations are
* extracted and used to compute the pose of the calibration object in the
* camera coordinate system.
dev_update_off ()
* Directories with calibration images and data files
ImageNameStart := '3d_machine_vision/923-0/0000'
DataNameStart := 'hand_eye/movingcam_'
NumImages := 14
read_image (Image, ImageNameStart + '01')
dev_close_window ()
get_image_size (Image, Width, Height)
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)
dev_set_line_width (2)
dev_set_draw ('margin')
dev_display (Image)
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
ParamName := ['color_0','color_1','color_2','color_3','color_4','color_5','color_6','alpha_6']
ParamValue := ['red','green','blue','red','green','blue','white',0.7]
* Labels for the visualized 3D object models.
tuple_gen_const (7, '', Labels)
Labels[0] := 'Robot\'s Tool'
Labels[3] := 'Robot\'s Base'
Instructions[0] := 'Rotate: Left button'
Instructions[1] := 'Zoom:   Shift + left button'
Instructions[2] := 'Move:   Ctrl  + left button'
* Set size for 3D visualization in [m]
ArrowThickness := 0.005
ArrowLength := 0.05
gen_robot_tool_and_base_object_model_3d (ArrowThickness, ArrowLength, OM3DToolOrigin, OM3DBase)
* Load the calibration plate description file.
* Make sure that the file is in the current directory or
* in HALCONROOT/calib, or use an absolute path.
CalTabFile := 'C:/Users/alw/Desktop/caltab.descr'
* Read the initial values for the internal camera parameters
* read_cam_par (DataNameStart + 'start_campar.dat', StartCamParam)
* Create the calibration model for the hand eye calibration
* where the calibration object is observed with a camera
* Calibration 02: Code generated by Calibration 02

StartCamParam := ['area_scan_division',0.008,0,8.3e-006,8.3e-006,640,480,1280,960]

create_calib_data ('hand_eye_moving_cam', 1, 1, CalibDataID)
* Set the camera type used
set_calib_data_cam_param (CalibDataID, 0, [], StartCamParam)
* Set the calibration object
set_calib_data_calib_object (CalibDataID, 0, CalTabFile)
* Start the loop over the calibration images
* Set the optimization method to be used
set_calib_data (CalibDataID, 'model', 'general', 'optimization_method', 'nonlinear')
disp_message (WindowHandle, 'The calibration data model was created', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()

dev_open_window (0, Width + 10, Width, Height, 'black', WindowHandleR)
set_display_font (WindowHandleR, 14, 'mono', 'true', 'false')
for I := 1 to NumImages - 1 by 1
    dev_set_window (WindowHandle)
    dev_clear_window ()
    read_image (Image, ImageNameStart + I$'02d')
    dev_display (Image)
    * Search for the calibration plate, extract the marks and the
    * pose of it, and store the results in the calibration data
    * The poses are stored in the calibration data model for use by
    * the hand eye calibration and do not have to be set explicitly
    find_calib_object (Image, CalibDataID, 0, 0, I, [], [])
    get_calib_data_observ_contours (Caltab, CalibDataID, 'caltab', 0, 0, I)
    get_calib_data_observ_points (CalibDataID, 0, 0, I, RCoord, CCoord, Index, PoseForCalibrationPlate)
    * Visualize the extracted calibration marks and the estimated pose (coordinate system)
    dev_set_color ('green')
    dev_display (Image)
    dev_display (Caltab)
    dev_set_color ('yellow')
    disp_cross (WindowHandle, RCoord, CCoord, 6, 0)
    dev_set_colored (3)
    disp_3d_coord_system (WindowHandle, StartCamParam, PoseForCalibrationPlate, 0.01)
    disp_message (WindowHandle, 'Extracting data from calibration image ' + (I + 1) + ' of ' + NumImages, 'window', 12, 12, 'black', 'true')
    * Read pose of tool in robot base coordinates (ToolInBasePose)
    read_pose (DataNameStart + 'robot_pose_' + I$'02d' + '.dat', ToolInBasePose)
    if (I == 1)
        PoseIn := [-0.006,-0.296,12,178,2,270,0]
    else
        PoseIn := PoseOut
    endif
    rigid_trans_object_model_3d (OM3DToolOrigin, ToolInBasePose, OM3DTool)
    visualize_object_model_3d (WindowHandleR, [OM3DTool,OM3DBase], [], PoseIn, ParamName, ParamValue, 'Position of robot tool coordinate system in robot base coordinate system', Labels, Instructions, PoseOut)
    * Set the pose tool in robot base coordinates in the calibration data model
    set_calib_data (CalibDataID, 'tool', I, 'tool_in_base_pose', ToolInBasePose)
endfor
dev_set_window (WindowHandleR)
dev_close_window ()
disp_message (WindowHandle, 'All relevant data has been set in the calibration data model', 'window', 12, 12, 'black', 'true')
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
* Check the input poses for consistency
check_hand_eye_calibration_input_poses (CalibDataID, 0.05, 0.005, Warnings)
if (|Warnings| != 0)
    * There were problem detected in the input poses. Inspect Warnings and
    * remove erroneous poses with remove_calib_data and remove_calib_data_observ.
    dev_inspect_ctrl (Warnings)
    stop ()
endif
* 
* Perform the hand eye calibration and store the results to file
* The calibration of the cameras is done internally prior
* to the hand eye calibration
dev_display (Image)
disp_message (WindowHandle, 'Performing the hand-eye calibration', 'window', 12, 12, 'black', 'true')
calibrate_hand_eye (CalibDataID, Errors)
* Query the error of the camera calibration
get_calib_data (CalibDataID, 'model', 'general', 'camera_calib_error', CamCalibError)
* Query the camera parameters and the poses
get_calib_data (CalibDataID, 'camera', 0, 'params', CamParam)
* Get poses computed by the hand eye calibration
get_calib_data (CalibDataID, 'camera', 0, 'tool_in_cam_pose', ToolInCamPose)
get_calib_data (CalibDataID, 'calib_obj', 0, 'obj_in_base_pose', CalObjInBasePose)
* Get the plane in base coordinate system pose by translating the
* CalObjInBasePose by the calibration object's thickness in the
* z-direction.
set_origin_pose (CalObjInBasePose, 0, 0, 0.005, PlaneInBasePose)
try
    * Handle situation where user does not have the permission
    * to write in the current directory.
    * 
    * Store the camera parameters to file
    write_cam_par (CamParam, DataNameStart + 'final_campar.dat')
    * Save the hand eye calibration results to file
    write_pose (ToolInCamPose, DataNameStart + 'final_pose_cam_tool.dat')
    write_pose (CalObjInBasePose, DataNameStart + 'final_pose_base_calplate.dat')
    write_pose (PlaneInBasePose, DataNameStart + 'final_pose_base_plane.dat')
catch (Exception)
    * do nothing
endtry
dev_display (Image)
* Display calibration errors
disp_results (WindowHandle, CamCalibError, Errors)
disp_continue_message (WindowHandle, 'black', 'true')
stop ()
* For the given camera, get the corresponding pose indices and calibration object indices
query_calib_data_observ_indices (CalibDataID, 'camera', 0, CalibObjIdx, PoseIds)
* Compute the pose of the calibration object in the camera coordinate
* system via calibrated poses and the ToolInBasePose and visualize it.
* Set sizes for 3D visualization in [m]
CameraSize := 0.05
CameraConeLength := 0.3
get_calib_data (CalibDataID, 'calib_obj', 0, 'x', PX)
get_calib_data (CalibDataID, 'calib_obj', 0, 'y', PY)
get_calib_data (CalibDataID, 'calib_obj', 0, 'z', PZ)
gen_object_model_3d_from_points (PX, PY, PZ, OM3DObjectOrig)
rigid_trans_object_model_3d (OM3DObjectOrig, CalObjInBasePose, OM3DObject)
dev_open_window (0, Width + 10, Width, Height, 'black', WindowHandleR)
set_display_font (WindowHandleR, 14, 'mono', 'true', 'false')
ParamName := ['color_0','color_1','color_2','color_3','color_4','color_5','color_6','color_7','alpha_7','color_8','color_9','color_10','alpha_8','alpha_9','alpha_10','point_size']
ParamValue := ['red','red','green','blue','red','green','blue','white',0.7,'magenta','yellow','white',0.5,0.5,0.5,5]
* Labels for the visualized 3D object models.
tuple_gen_const (11, '', Labels)
Labels[0] := 'Calibration Object'
Labels[1] := 'Robot\'s Tool'
Labels[4] := 'Robot\'s Base'
Labels[8] := 'Camera'
for I := 1 to NumImages - 1 by 1
    dev_set_window (WindowHandle)
    dev_clear_window ()
    read_image (Image, ImageNameStart + I$'02d')
    dev_display (Image)
    * Obtain the pose of the tool in robot base coordinates used in the calibration.
    * The index corresponds to the index of the pose of the observation object.
    * set_calib_data (CalibDataID, 'tool', I, 'tool_in_base_pose', ToolInBasePose)
    get_calib_data (CalibDataID, 'tool', I, 'tool_in_base_pose', ToolInBasePose)    
*       get_calib_data (CalibDataID, 'tool', PoseIds[I], 'tool_in_base_pose', ToolInBasePose)
    * Compute the pose of the calibration object relative to the camera
    calc_calplate_pose_movingcam (CalObjInBasePose, ToolInCamPose, ToolInBasePose, CalObjInCamPose)
    * Display the coordinate system
    dev_set_colored (3)
    disp_3d_coord_system (WindowHandle, CamParam, CalObjInCamPose, 0.01)
    Message := 'Using the calibration results to display '
    Message[1] := 'the coordinate system in image ' + (I + 1) + ' of ' + NumImages
    disp_message (WindowHandle, Message, 'window', 12, 12, 'black', 'true')
    gen_camera_and_tool_moving_cam_object_model_3d (ToolInCamPose, ToolInBasePose, CameraSize, CameraConeLength, OM3DToolOrigin, CamParam, OM3DCamera, OM3DTool)
    if (I == 1)
        PoseIn := [-0.006,-0.296,12,178,2,270,0]
    else
        PoseIn := PoseOut
    endif
    visualize_object_model_3d (WindowHandleR, [OM3DObject,OM3DTool,OM3DBase,OM3DCamera], [], PoseIn, ParamName, ParamValue, [], Labels, Instructions, PoseOut)
endfor
* Clear the data model
clear_calib_data (CalibDataID)
dev_set_window (WindowHandleR)
dev_close_window ()
* 
* After the hand-eye calibration the computed pose
* ToolInCamPose can be used in robotic grasping applications.
* To grasp an object with the robot, typically, its pose
* with respect to the camera is determined (which
* is simulated here by setting the object's pose to the
* pose of the calibration object)
ObjInCamPose := CalObjInCamPose
* If the tool coordinate system is placed at the gripper
* and a detected object ObjInCamPose shall be grasped
* (here the calibration object),
* the pose of the detected object relative
* to the robot base coordinate system has to be computed.
pose_invert (ToolInCamPose, CamInToolPose)
pose_compose (ToolInBasePose, CamInToolPose, CamInBasePose)
pose_compose (CamInBasePose, ObjInCamPose, ObjInBasePose)

4.查看结果

最后,在窗口–打开变量控制窗口,查看最后的标定结果
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/134205.html原文链接:https://javaforall.net

(1)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 轻松学习RSA加密算法原理「建议收藏」

    轻松学习RSA加密算法原理「建议收藏」http://blog.csdn.net/q376420785/article/details/8557266http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html以前也接触过RSA加密算法,感觉这个东西太神秘了,是数学家的事,和我无关。但是,看了很多关于RSA加密算法原理的资料之后,我发现其

    2022年5月1日
    32
  • SVN安装配置以及启动[通俗易懂]

    SVN安装配置以及启动[通俗易懂]SVN是一个开放源代码的版本控制系统,全称叫做Subversionwindows下载链接地址1.下载并安装下载好之后直接双击,然后安装就没什么好说的了,这个软件安装及其简单。2.验证cmd中敲svn–version,如果出现下面的结果,则说明安装成功了!(上面没问题的可以忽略这一段!)如果有问题,检查自己的环境变量有没有把对应的bin目录配置进去,现在安装的svn大部分都会自动配置的,如果他没有自动配置,则需要手动编辑path:3.配置svn仓库:我的做法是在安装目录下建一个空文

    2022年10月21日
    0
  • 中国.NET培训机构排名

    中国.NET培训机构排名中国.NET培训机构排名第一名:睿智汇海第二名:东方标准第三名:威讯教育 转载于:https://blog.51cto.com/dempsey/155328

    2022年7月19日
    17
  • IT公司速查手册数据找回来了.「建议收藏」

    IT公司速查手册数据找回来了.「建议收藏」 谢谢大家的观心,IT公司速查手册数据找回来了. 前一段时间由于数据丢失,于今日已全部找回,共有近6500多家公司入驻,评论数多达10万多条。本站永久域名为(www.seeitco.com)

    2022年7月16日
    13
  • 无人机拍360全景操作细节详解

    对于制作360全景的小伙伴来说,无人机航拍是其中最重要的一课,无人机所展示的360全景地图是其他任何拍摄手段都不能比拟的,所以无人机拍摄也深受人们的欢迎。制作360全景的第一步肯定是拍摄照片我们先把无人机飞到空中大概50-70米的位置,把无人机相机调整到水平视角开始拍摄,朝一个方向横向旋转水平拍摄,拍摄一圈8张图片,每张照片20%左右的重合度。第一圈拍摄完成之后把无人机慢慢下降几米,或者调…

    2022年4月8日
    157
  • mysql databasemetadata_DatabaseMetaData的用法(转)

    mysql databasemetadata_DatabaseMetaData的用法(转)一.得到这个对象的实例Connectioncon;con=DriverManager.getConnection(url,userName,password);DatabaseMetaDatadbmd=con.getMetaData();二.方法getTables的用法原型:ResultSetDatabaseMetaData.getTables(Stringcatalog,…

    2022年6月19日
    22

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号