常见学习率衰减方式

常见学习率衰减方式学习率学习率的作用​ 在机器学习中,监督式学习通过定义一个模型,并根据训练集上的数据估计最优参数。梯度下降法是一个广泛被用来最小化模型误差的参数优化算法。梯度下降法通过多次迭代,并在每一步中最小化成本函数(cost来估计模型的参数。学习率(learningrate),在迭代过程中会控制模型的学习进度。​ 在梯度下降法中,都是给定的统一的学习率,整个优化过程中都以确定的步长进行更新,在…

大家好,又见面了,我是你们的朋友全栈君。

学习

学习率的作用

​ 在机器学习中,监督式学习通过定义一个模型,并根据训练集上的数据估计最优参数。梯度下降法是一个广泛被用来最小化模型误差的参数优化算法。梯度下降法通过多次迭代,并在每一步中最小化成本函数(cost 来估计模型的参数。学习率 (learning rate),在迭代过程中会控制模型的学习进度。

​ 在梯度下降法中,都是给定的统一的学习率,整个优化过程中都以确定的步长进行更新, 在迭代优化的前期中,学习率较大,则前进的步长就会较长,这时便能以较快的速度进行梯度下降,而在迭代优化的后期,逐步减小学习率的值,减小步长,这样将有助于算法的收敛,更容易接近最优解。故而如何对学习率的更新成为了研究者的关注点。
​ 在模型优化中,常用到的几种学习率衰减方法有:分段常数衰减、多项式衰减、指数衰减、自然指数衰减、余弦衰减、线性余弦衰减、噪声线性余弦衰减

学习率衰减常用参数有哪些

参数名称 参数说明
learning_rate 初始学习率
global_step 用于衰减计算的全局步数,非负,用于逐步计算衰减指数
decay_steps 衰减步数,必须是正值,决定衰减周期
decay_rate 衰减率
end_learning_rate 最低的最终学习率
cycle 学习率下降后是否重新上升
alpha 最小学习率
num_periods 衰减余弦部分的周期数
initial_variance 噪声的初始方差
variance_decay 衰减噪声的方差

分段常数衰减

​ 分段常数衰减需要事先定义好的训练次数区间,在对应区间置不同的学习率的常数值,一般情况刚开始的学习率要大一些,之后要越来越小,要根据样本量的大小设置区间的间隔大小,样本量越大,区间间隔要小一点。下图即为分段常数衰减的学习率变化图,横坐标代表训练次数,纵坐标代表学习率。

[外链图片转存失败(img-kw3S7wkH-1563178407618)(./img/ch3/learnrate1.png)]

指数衰减

​ 以指数衰减方式进行学习率的更新,学习率的大小和训练次数指数相关,其更新规则为:
d e c a y e d _ l e a r n i n g _ r a t e = l e a r n i n g _ r a t e ∗ d e c a y _ r a t e g l o b a l _ s t e p d e c a y _ s t e p s decayed{\_}learning{\_}rate =learning{\_}rate*decay{\_}rate^{\frac{global{\_step}}{decay{\_}steps}} decayed_learning_rate=learning_ratedecay_ratedecay_stepsglobal_step
​ 这种衰减方式简单直接,收敛速度快,是最常用的学习率衰减方式,如下图所示,绿色的为学习率随
训练次数的指数衰减方式,红色的即为分段常数衰减,它在一定的训练区间内保持学习率不变。

[外链图片转存失败(img-RRMXfiVj-1563178407618)(./img/ch3/learnrate2.png)]

自然指数衰减

​ 它与指数衰减方式相似,不同的在于它的衰减底数是 e e e,故而其收敛的速度更快,一般用于相对比较
容易训练的网络,便于较快的收敛,其更新规则如下
d e c a y e d _ l e a r n i n g _ r a t e = l e a r n i n g _ r a t e ∗ e − d e c a y _ r a t e g l o b a l _ s t e p decayed{\_}learning{\_}rate =learning{\_}rate*e^{\frac{-decay{\_rate}}{global{\_}step}} decayed_learning_rate=learning_rateeglobal_stepdecay_rate
​ 下图为为分段常数衰减、指数衰减、自然指数衰减三种方式的对比图,红色的即为分段常数衰减图,阶梯型曲线。蓝色线为指数衰减图,绿色即为自然指数衰减图,很明可以看到自然指数衰减方式下的学习率衰减程度要大于一般指数衰减方式,有助于更快的收敛。

[外链图片转存失败(img-FE9J8UEg-1563178407618)(./img/ch3/learnrate3.png)]

多项式衰减

​ 应用多项式衰减的方式进行更新学习率,这里会给定初始学习率和最低学习率取值,然后将会按照
给定的衰减方式将学习率从初始值衰减到最低值,其更新规则如下式所示。
g l o b a l _ s t e p = m i n ( g l o b a l _ s t e p , d e c a y _ s t e p s ) global{\_}step=min(global{\_}step,decay{\_}steps) global_step=min(global_step,decay_steps)

d e c a y e d _ l e a r n i n g _ r a t e = ( l e a r n i n g _ r a t e − e n d _ l e a r n i n g _ r a t e ) ∗ ( 1 − g l o b a l _ s t e p d e c a y _ s t e p s ) p o w e r + e n d _ l e a r n i n g _ r a t e decayed{\_}learning{\_}rate =(learning{\_}rate-end{\_}learning{\_}rate)* \left( 1-\frac{global{\_step}}{decay{\_}steps}\right)^{power} \\ +end{\_}learning{\_}rate decayed_learning_rate=(learning_rateend_learning_rate)(1decay_stepsglobal_step)power+end_learning_rate

​ 需要注意的是,有两个机制,降到最低学习率后,到训练结束可以一直使用最低学习率进行更新,另一个是再次将学习率调高,使用 decay_steps 的倍数,取第一个大于 global_steps 的结果,如下式所示.它是用来防止神经网络在训练的后期由于学习率过小而导致的网络一直在某个局部最小值附近震荡,这样可以通过在后期增大学习率跳出局部极小值。
d e c a y _ s t e p s = d e c a y _ s t e p s ∗ c e i l ( g l o b a l _ s t e p d e c a y _ s t e p s ) decay{\_}steps = decay{\_}steps*ceil \left( \frac{global{\_}step}{decay{\_}steps}\right) decay_steps=decay_stepsceil(decay_stepsglobal_step)
​ 如下图所示,红色线代表学习率降低至最低后,一直保持学习率不变进行更新,绿色线代表学习率衰减到最低后,又会再次循环往复的升高降低。

[外链图片转存失败(img-3s21wgMu-1563178407619)(./img/ch3/learnrate4.png)]

余弦衰减

​ 余弦衰减就是采用余弦的相关方式进行学习率的衰减,衰减图和余弦函数相似。其更新机制如下式所示:
g l o b a l _ s t e p = m i n ( g l o b a l _ s t e p , d e c a y _ s t e p s ) global{\_}step=min(global{\_}step,decay{\_}steps) global_step=min(global_step,decay_steps)

c o s i n e _ d e c a y = 0.5 ∗ ( 1 + c o s ( π ∗ g l o b a l _ s t e p d e c a y _ s t e p s ) ) cosine{\_}decay=0.5*\left( 1+cos\left( \pi* \frac{global{\_}step}{decay{\_}steps}\right)\right) cosine_decay=0.5(1+cos(πdecay_stepsglobal_step))

d e c a y e d = ( 1 − α ) ∗ c o s i n e _ d e c a y + α decayed=(1-\alpha)*cosine{\_}decay+\alpha decayed=(1α)cosine_decay+α

d e c a y e d _ l e a r n i n g _ r a t e = l e a r n i n g _ r a t e ∗ d e c a y e d decayed{\_}learning{\_}rate=learning{\_}rate*decayed decayed_learning_rate=learning_ratedecayed

​ 如下图所示,红色即为标准的余弦衰减曲线,学习率从初始值下降到最低学习率后保持不变。蓝色的线是线性余弦衰减方式曲线,它是学习率从初始学习率以线性的方式下降到最低学习率值。绿色噪声线性余弦衰减方式。

[外链图片转存失败(img-uEcVuiCy-1563178407619)(./img/ch3/learnrate5.png)]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/134221.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • verilog语言与VHDL_vhdl程序设计

    verilog语言与VHDL_vhdl程序设计今年开始接触更改产品的FPGA代码,感觉公司虽然搞了很多年了,但是FPGA这块缺乏一些“软件工程”上的概念导入。如果对于Altera/Xilinx公司,如果做IP库,可能需要考虑各种编译器的兼容性,不能引入太多的“高级”语法,但是,对于一个公司而言,我认为代码的可维护性是放在第一位的,是在编译器兼容性之类之上的要求。1.VHDL总体而言,VHDL提供了如下一些语法特性,用于简化代码:1.1record和type定义例如对于KM1024i喷头控制,我们可以定义如下: –喷头控

    2022年9月21日
    3
  • vsto 批量删除列

    vsto 批量删除列list.add(“S1”);list.add(“D5”);stringaddress=string.Join(“,”,list.ToArray());worksheet.get_Range(address,Type.Missing).EntireColumn.Delete(0);

    2025年7月17日
    4
  • 数据库建模

    1)定义:在设计数据库时,对现实世界进行分析、抽象、并从中找出内在联系,进而确定数据库的结构,这一过程就称为数据库建模。2)作用:1.模型能准确表达设计意图,更易于进行技术交流。2.模型可以用来高效地生产代码、脚本、技术文档,可以做到“一处改动,多处同步”的效果。3.模型驱动的开发能使开发过程保持一致性,提高开发人员的效率,而且能保持我们的设计模型能被准确的实现而不产生歪曲。

    2022年4月8日
    194
  • 多进程 python_python课程

    多进程 python_python课程进程前置知识点进程:一个程序运行起来后,代码+用到的资源称之为进程,它是操作系统分配资源的基本单元。并发:指的是任务数多余cpu核数,通过操作系统的各种任务调度算法,实现用多个任务“一起”执行

    2022年7月28日
    4
  • seq2seq模型以及其tensorflow的简化代码实现

    seq2seq模型以及其tensorflow的简化代码实现

    2021年11月19日
    43
  • pycharm怎么打包成exe文件_pycharm打包成可执行文件

    pycharm怎么打包成exe文件_pycharm打包成可执行文件一.pycharm打包exe时加上窗体及exe桌面图标1.首先添加图片文件转py文件得工具pyrcc打开File中的Settings2.按步骤添加工具名称Name:PyqrcProgram:C:\anaconda3\Scripts\pyrcc5.exeArguments:FileNameFileNameFileName-oFileNameWithoutExtensionFileNameWithoutExtensionFileNameWithoutExtension_rc.pyWorkin

    2022年8月26日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号