python merge函数[通俗易懂]

python merge函数[通俗易懂]本篇详细说明merge的应用,join和concatenate的拼接方法的与之相似。pd.merge(left,right,how=’inner’,on=None,left_on=None,right_on=None,left_index=False,right_index=False,sort=True,suffixes=(‘_x’,’_y’),copy=True,indicator=False,validate=No

大家好,又见面了,我是你们的朋友全栈君。

本篇详细说明merge的应用,join 和concatenate的拼接方法的与之相似。

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False,
         validate=None)
  • 1
  • 2
  • 3
  • 4

参数如下:

  • left: 拼接的左侧DataFrame对象
  • right: 拼接的右侧DataFrame对象
  • on: 要加入的列或索引级别名称。 必须在左侧和右侧DataFrame对象中找到。 如果未传递且left_index和right_index为False,则DataFrame中的列的交集将被推断为连接键。
  • left_on:左侧DataFrame中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。
  • right_on: 左侧DataFrame中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。
  • left_index: 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。 对于具有MultiIndex(分层)的DataFrame,级别数必须与右侧DataFrame中的连接键数相匹配。
  • right_index: 与left_index功能相似。
  • how: One of ‘left’, ‘right’, ‘outer’, ‘inner’. 默认inner。inner是取交集,outer取并集。比如left:[‘A’,‘B’,‘C’];right[’’A,‘C’,‘D’];inner取交集的话,left中出现的A会和right中出现的买一个A进行匹配拼接,如果没有是B,在right中没有匹配到,则会丢失。’outer’取并集,出现的A会进行一一匹配,没有同时出现的会将缺失的部分添加缺失值。
  • sort: 按字典顺序通过连接键对结果DataFrame进行排序。 默认为True,设置为False将在很多情况下显着提高性能。
  • suffixes: 用于重叠列的字符串后缀元组。 默认为(‘x’,’ y’)。
  • copy: 始终从传递的DataFrame对象复制数据(默认为True),即使不需要重建索引也是如此。
  • indicator:将一列添加到名为_merge的输出DataFrame,其中包含有关每行源的信息。 _merge是分类类型,并且对于其合并键仅出现在“左”DataFrame中的观察值,取得值为left_only,对于其合并键仅出现在“右”DataFrame中的观察值为right_only,并且如果在两者中都找到观察点的合并键,则为left_only。

1、基础实例:

import pandas as pd

left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                       'A': ['A0', 'A1', 'A2', 'A3'],
                       'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']})
result = pd.merge(left, right, on='key')

# on参数传递的key作为连接键
result
Out[4]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K2  C2  D2
3  A3  B3  K3  C3  D3
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

2、传入的on的参数是列表:

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                      'key2': ['K0', 'K1', 'K0', 'K1'],
                         'A': ['A0', 'A1', 'A2', 'A3'],
                         'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                         'C': ['C0', 'C1', 'C2', 'C3'],
                         'D': ['D0', 'D1', 'D2', 'D3']})

result = pd.merge(left, right, on=['key1', 'key2'])
# 同时传入两个Key,此时会进行以['key1','key2']列表的形式进行对应,left的keys列表是:[['K0', 'K0'],['K0', 'K1'],['K1', 'K0'],['K2', 'K1']],
left的keys列表是:[['K0', 'K0'],['K1', 'K0'],['K1', 'K0'],['K2', 'K0']],因此会有1个['K0', 'K0']、2个['K1', 'K0']对应。

result
Out[6]: 
    A   B key1 key2   C   D
0  A0  B0   K0   K0  C0  D0
1  A2  B2   K1   K0  C1  D1
2  A2  B2   K1   K0  C2  D2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

3、Merge method
如果组合键没有出现在左表或右表中,则连接表中的值将为NA。

Merge method SQL Join Name Description
left LEFTOUTER JOIN Use keys from left frame only
right RIGHT OUTER JOIN Use keys from right frame only
outer FULL OUTER JOIN Use union of keys from both frames
inner INNER JOIN Use intersection of keys from both frames
result = pd.merge(left, right, how='left', on=['key1', 'key2'])
# Use keys from left frame only
result
Out[34]: 
    A   B key1 key2    C    D
0  A0  B0   K0   K0   C0   D0
1  A1  B1   K0   K1  NaN  NaN
2  A2  B2   K1   K0   C1   D1
3  A2  B2   K1   K0   C2   D2
4  A3  B3   K2   K1  NaN  NaN

result = pd.merge(left, right, how='right', on=['key1', 'key2'])
# Use keys from right frame only
result
Out[36]: 
     A    B key1 key2   C   D
0   A0   B0   K0   K0  C0  D0
1   A2   B2   K1   K0  C1  D1
2   A2   B2   K1   K0  C2  D2
3  NaN  NaN   K2   K0  C3  D3

result = pd.merge(left, right, how='outer', on=['key1', 'key2'])
# Use intersection of keys from both frames 
result
Out[38]: 
     A    B key1 key2    C    D
0   A0   B0   K0   K0   C0   D0
1   A1   B1   K0   K1  NaN  NaN
2   A2   B2   K1   K0   C1   D1
3   A2   B2   K1   K0   C2   D2
4   A3   B3   K2   K1  NaN  NaN
5  NaN  NaN   K2   K0   C3   D3
-----------------------------------------------------
left = pd.DataFrame({'A' : [1,2], 'B' : [2, 2]})
right = pd.DataFrame({'A' : [4,5,6], 'B': [2,2,2]})
result = pd.merge(left, right, on='B', how='outer')
result
Out[40]: 
   A_x  B  A_y
0    1  2    4
1    1  2    5
2    1  2    6
3    2  2    4
4    2  2    5
5    2  2    6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

4、传入indicator参数
merge接受参数指示符。 如果为True,则将名为_merge的Categorical类型列添加到具有值的输出对象:

Observation Origin _merge value
Merge key only in ‘left’ frame left_only
Merge key only in ‘right’ frame right_only
Merge key in both frames
df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})
df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]})
pd.merge(df1, df2, on='col1', how='outer', indicator=True)

Out[44]: 
   col1 col_left  col_right      _merge
0   0.0        a        NaN   left_only
1   1.0        b        2.0        both
2   2.0      NaN        2.0  right_only
3   2.0      NaN        2.0  right_only
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

指标参数也将接受字符串参数,在这种情况下,指标函数将使用传递的字符串的值作为指标列的名称。

pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
Out[45]: 
   col1 col_left  col_right indicator_column
0   0.0        a        NaN        left_only
1   1.0        b        2.0             both
2   2.0      NaN        2.0       right_only
3   2.0      NaN        2.0       right_only
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

5、以index为链接键
需要同时设置left_index= True 和 right_index= True,或者left_index设置的同时,right_on指定某个Key。总的来说就是需要指定left、right链接的键,可以同时是key、index或者混合使用。

left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
   ....:                      'B': ['B0', 'B1', 'B2']},
   ....:                      index=['K0', 'K1', 'K2'])
   ....: 
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
   ....:                       'D': ['D0', 'D2', 'D3']},
   ....:                       index=['K0', 'K2', 'K3'])
   ....: 

# 只有K0、K2有对应的值
pd.merge(left,right,how= 'inner',left_index=True,right_index=True)
Out[51]: 
     A   B   C   D
K0  A0  B0  C0  D0
K2  A2  B2  C2  D2


left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                   'key': ['K0', 'K1', 'K0', 'K1']})


right = pd.DataFrame({'C': ['C0', 'C1'],
                      'D': ['D0', 'D1']},
                    index=['K0', 'K1'])


result = pd.merge(left, right, left_on='key', right_index=True, how='left', sort=False)
#  left_on='key', right_index=True
result
Out[54]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K0  C0  D0
3  A3  B3  K1  C1  D1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

6、sort对链接的键值进行排序:

紧接着上一例,设置sort= True
result = pd.merge(left, right, left_on='key', right_index=True, how='left', sort=True)

result
Out[57]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
2  A2  B2  K0  C0  D0
1  A1  B1  K1  C1  D1
3  A3  B3  K1  C1  D1
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/134607.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 下拉框Html.DropDownList 和DropDownListFor 的经常用法

    下拉框Html.DropDownList 和DropDownListFor 的经常用法

    2021年12月3日
    44
  • 一个Web前端自学者的自述「建议收藏」

    一个Web前端自学者的自述「建议收藏」想来想去还是写下这篇文章,先说明,我精通JAVA编程语言和web前端常见的技术,个人是做JAVA的多,但是更加喜欢前端。因为我从高一开始接触JAVA,家父是黑马的JAVA讲师,自己对编程很热爱,在大学

    2022年8月1日
    4
  • 最大矩形面积leetcode_leetcode免费吗

    最大矩形面积leetcode_leetcode免费吗原题链接给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。示例:输入: [2,1,5,6,2,3]输出: 10题解对于每一个长方体,找出左边比他小的第一个长方体和右边比他小的第一个长方体,然后遍历求结即可class Solution {public

    2022年8月8日
    12
  • 电脑apk文件怎么打开_python pkl文件

    电脑apk文件怎么打开_python pkl文件importpickledoc=open(r’D:\dataset\st_gcn_processed_data\data\NTU_RGB_D\xview\val_label.txt’,’a’)#打开一个存储文件,并依次写入test=open(r’D:\dataset\st_gcn_processed_data\data\NTU_RGB_D\xview\val_label.pkl’,’rb’)data=pickle.load(test)print(data,file=doc).

    2025年8月26日
    5
  • 记一次某网站实战

    记一次某企业实战0x00前言近段时间来也没怎么更新过博客,在这里就来水篇文章吧。前段时间一直在做项目,也来分享并且记录一下自己的一些成果,和一些小思路。0x01信息收集渗透的第一步肯定是

    2021年12月11日
    49
  • c语言贪吃蛇源代码简单_java贪吃蛇源码

    c语言贪吃蛇源代码简单_java贪吃蛇源码所用知识:一维数组的使用结构体的使用播放音乐函数的使用电脑按键的检测窗口光标坐标函数的使用相关函数讲解1.光标移动到某一指定坐标的函数#include<windows.h>//坐标的APIvoidgotoxy(intx,inty){ HANDLEhandle=GetStdHandle(STD_OUTPUT_HANDLE); COORDco…

    2025年9月12日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号