ResNet+FPN实现+白嫖代码「建议收藏」

ResNet+FPN实现+白嫖代码「建议收藏」===========================================================有现成的代码:https://github.com/Kongsea/FPN_TensorFlow推荐根据该博客来学习:https://www.jianshu.com/p/324af87a11a6============================================================纸上得来终觉浅,须知此事要coding!ResNet+FPN

大家好,又见面了,我是你们的朋友全栈君。

===========================================================

有现成的代码:https://github.com/Kongsea/FPN_TensorFlow

推荐根据该博客来学习:https://www.jianshu.com/p/324af87a11a6

                                       https://blog.csdn.net/bi_diu1368/article/details/90812517

============================================================

纸上得来终觉浅,须知此事要coding!

ResNet+FPN实现

我们先说FPN的目的。
熟悉faster rcnn的人知道,faster rcnn利用的是vgg的最后的卷积特征,大小是7x7x512。而这造成了一个问题,经过多次卷积之后的特征通常拥有很大的感受野,它们比较适合用来检测大物体,或者说,它们在检测小物体任务上效果很差,所以像ssd和fpn这样的网络思想就是将前面和后面的的卷积层都拿出来,组成一个multisacle结果,既能检测大物体,又能检测小物体。
基于这个思想,fpn从ResNet 34层模型构造了一组新的特征,p2,p3,p4,p5,每一个p_ipi​都是ResNet中不同卷积层融合的结果,这保证了他们拥有多尺度信息。他们拥有相同的维度,都是256
构造的方式如下,先贴FPN:
在这里插入图片描述

bottom-up就是简单的使用了ResNet34,主要是top-down中的思想。
在上文中我们提到c2-c5的大小和维度分别是56x56x64,28x28x128,14x14x256,7x7x512,所以在top-down中,先用了一个1x1x256的卷积将c5:7x7x512 变成了m5:7x7x256, 每一个m之后都接了一个3x3x256卷积用来消除不同层之间的混叠效果,其实也就是缓冲作用。
关于p4的构造,我们先将m5的feature map加倍,用简单的nearest neighbour upsamping方法就行,这样m5就变成了m5’:14x14x256,同时c4:14x14x256经过1x1x256得到c4’:14x14x256, 将m5’+c4’, element-wisely,就可以得到m4:14x14x256。

所以最后的p2-p5大小分别是
56x56x256。,28x28x256,14x14x256,7x7x256。

这只是FPN结构,具体的FPN网络就比较复杂了,也贴一个在这里插入图片描述
稍微讲一下FPN结构吧,用的原理就是图像处理中很简单但很重要的金字塔结构。以ResNet50为例,四层结构得到的特征图尺寸应为:(ResNet50可看我上一篇博客)
c1:torch.Size([1, 64, 56, 56])
c2:torch.Size([1, 256, 56, 56])
c3:torch.Size([1, 512, 28, 28])
c4:torch.Size([1, 1024, 14, 14])
c5:torch.Size([1, 2048, 7, 7])
之后对c1-c5进行处理。我们的目标是输出四种特征图,其尺寸不同,但深度都为256。
P2:torch.Size([1, 256, 56, 56])
P3:torch.Size([1, 256, 28, 28])
P4:torch.Size([1, 256, 14, 14])
P5:torch.Size([1, 256, 7, 7])
具体做法是:
1.将c5降到256,经过33的卷积处理输出P5.
2.c5上采样后与经过1
1降维处理过的c4相加,再经3*3卷积处理,得到P4。
以此类推…

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class Bottleneck(nn.Module):
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
class FPN(nn.Module):
    def __init__(self, block, layers):
        super(FPN, self).__init__()
        self.in_planes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        # Bottom-up layers
        self.layer1 = self._make_layer(block,  64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        # Top layer
        self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0)  # Reduce channels
        # Smooth layers
        self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        # Lateral layers
        self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
        self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.in_planes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_planes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.in_planes, planes, stride, downsample))
        self.in_planes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.in_planes, planes))
        return nn.Sequential(*layers)
    def _upsample_add(self, x, y):
        _,_,H,W = y.size()
        return F.interpolate(x, size=(H,W), mode='bilinear',align_corners=True) + y
    def forward(self, x):
        # Bottom-up
        c1 = F.relu(self.bn1(self.conv1(x)))
        c1 = F.max_pool2d(c1, kernel_size=3, stride=2, padding=1)
        #print(f'c1:{c1.shape}')
        c2 = self.layer1(c1)
        #print(f'c2:{c2.shape}')
        c3 = self.layer2(c2)
        #print(f'c3:{c3.shape}')
        c4 = self.layer3(c3)
        #print(f'c4:{c4.shape}')
        c5 = self.layer4(c4)
        #print(f'c5:{c5.shape}')
        # Top-down
        p5 = self.toplayer(c5)
        #print(f'p5:{p5.shape}')
        p4 = self._upsample_add(p5, self.latlayer1(c4))
        #print(f'latlayer1(c4):{self.latlayer1(c4).shape}, p4:{p4.shape}')
        p3 = self._upsample_add(p4, self.latlayer2(c3))
        #print(f'latlayer1(c3):{self.latlayer2(c3).shape}, p3:{p3.shape}')
        p2 = self._upsample_add(p3, self.latlayer3(c2))
        #print(f'latlayer1(c2):{self.latlayer3(c2).shape}, p2:{p2.shape}')
        # Smooth
        p4 = self.smooth1(p4)
        p3 = self.smooth2(p3)
        p2 = self.smooth3(p2)
        return p2, p3, p4, p5
def FPN101():
    # return FPN(Bottleneck, [2,4,23,3])
    return FPN(Bottleneck, [3,4,6,3])
def test():
    net = FPN101()
    fms = net(Variable(torch.randn(1,3,224,224)))
    for fm in fms:
        print(fm.size())

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/136601.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 《Java从小白到大牛》之第10章 面向对象基础(上)

    《Java从小白到大牛》之第10章 面向对象基础(上)

    2021年6月8日
    98
  • BM3D算法相关笔记

    BM3D算法相关笔记三维矩阵主要原因就在于,三维矩阵中,第一维度代表行,第二维度代表列,第三维度代表页,当第三维度为1时,代表只有1页,自然缩减为二维。当第一维度为1时,代表只有一行,但是每页都有,所以,从物理的角度没有缩减为二维。http://blog.sina.com.cn/s/blog_7519cf530101ahsb.html

    2022年5月2日
    32
  • 优先级队列的使用[通俗易懂]

    优先级队列的使用[通俗易懂]优先级队列(priorityqueue)中的元素可以按照任意的顺序插入,却总是按照排序的顺序进行检索。也就是说,无论何时调用remove方法,总会获得当前优先级队列中最小的元素.然后,优先级队列并没有对所有的元素进行排序。如果用迭代的方式处理这些元素,并不需要对它们进行排序。优先级队列使用了一个优雅且高效的数据结构,称为堆(heap)。堆事一个可以自我调整的二叉树,对树执行添加(add)和删除(

    2025年12月2日
    4
  • PAT乙级-坑点集合

    PAT乙级-坑点集合PAT乙级虽然挺简单但是坑不少。因为不给出测试数据,所以不知道怎么才能AC。以下几个题都是只做对了一部分,剩下的错误的点怎么想都不知道怎么才能过,所以整理一下,等回头再慢慢琢磨。1.1008数组元素循环右移问题1008数组元素循环左移2.1012数字分类1012数字分类3.1014福尔摩斯的约会1014福尔摩斯的约会4.1017A/B…

    2022年5月2日
    37
  • 全面理解.htaccess语法中RewriteCond和RewriteRule意义

    全面理解.htaccess语法中RewriteCond和RewriteRule意义全面理解.htaccess语法中RewriteCond和RewriteRule意义.htaccess配置文件可以通过RewriteCond和RewriteRule实现伪静态。RewriteCond的语法//含义:当什么东西匹配某种模式,则..RewriteCondTestStringCondPattern[Flags]RewriteCond%{HTTP_H…

    2022年5月14日
    49
  • 二阶有源带通滤波器滤波原理[通俗易懂]

    二阶有源带通滤波器滤波原理[通俗易懂]转载增加:请注意有源滤波器因为运放的有效识别电压和响应频率的影响,适用于低频信号的滤波,对于高频信号最好使用无缘滤波。名词解释一阶低通滤波器,包含一组RC构成的滤波器,将谐波过滤一次;两阶低通滤波器,包含两组RC构成的滤波器,将谐波过滤两次。同理三阶滤波。。。。以下转载地址http://blog.sina.com.cn/s/blog_61144c49

    2022年5月2日
    228

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号