多重共线性:python中利用statsmodels计算VIF和相关系数消除共线性

多重共线性:python中利用statsmodels计算VIF和相关系数消除共线性多重共线性在python中的解决方法本文将讨论多重共线性的相关概念及利用python自动化消除多重共线性的方法,以供参考,欢迎拍砖线性模型与非线性模型关于线性模型与非线性模型的定义,似乎并没有确切的定论,但是个人认为建模首先得清楚地认识样本,样本有线性可分与线性不可分两种,所谓是否线性可分,是指是否存在一条直线(或平面)将样本分开。上图中y=0和y=1的样本可以由一条直线分开,如逻辑回归…

大家好,又见面了,我是你们的朋友全栈君。

多重共线性在python中的解决方法

本文将讨论多重共线性的相关概念及利用python自动化消除多重共线性的方法,以供参考,欢迎拍砖

线性模型与非线性模型

关于线性模型与非线性模型的定义,似乎并没有确切的定论,但是个人认为建模首先得清楚地认识样本,样本有线性可分与线性不可分两种,所谓是否线性可分,是指是否存在一条直线(或平面)将样本分开。
多重共线性:python中利用statsmodels计算VIF和相关系数消除共线性
上图中y=0和y=1的样本可以由一条直线分开,如逻辑回归模型最佳的应用样本即为上图样本(线性可分);如果样本是线性不可分,决策树等模型可以更有效地将样本分开,此时选择逻辑回归分类结果可能较差。
在这里插入图片描述
如上图中的样本,使用逻辑回归可能取得较差的分类效果。但是如果将特征映射到更高维空间,在这里插入图片描述
上式在二维直角坐标系中表现为圆,就可以将图中样本分开。
因此总结来说

  1. 选择何种模型取决于数据本身,线性可分数据使用逻辑回归等可以线性分开数据的线性模型可以取得更好的分类效果;线性不可分数据则不适合。
  2. 传统的线性模型可以通过将特征映射到高维空间中达到线性分开数据的目的,如SVM采用核技巧,逻辑回归加入原始特征的高维转换等。

多重共线性对线性回归和逻辑回归的影响

多重共线性是指在变量空间中,存在自变量可以近似地等于其他自变量的线性组合:
Y 约等于 W1X1 + W2X2 + … + Wn*Xn
此时如果将所有自变量用于线性回归或逻辑回归的建模,将导致模型系数不能准确表达自变量对Y的影响。比如:如果X1和X2近似相等,则模型Y = X1 + X2 可能被拟合成Y = 3 X1 – X2,原来 X2 与 Y 正向相关被错误拟合成负相关,导致模型没法在业务上得到解释。在评分卡建模中,可能将很多相关性很高的变量加入到建模自变量中,最终得到的模型如果用变量系数去解释自变量与目标变量的关系是不合适的。

VIF 和相关系数

相关矩阵是指由样本的相关系数组成的矩阵,自变量相关系数过大意味着存在共线性,同时会导致信息冗余,维度增加。设置相关系数的阈值,当大于threshold时,删除IV值较小的变量(IV值的定义及计算后文解释)。
VIF(variance inflation factors)VIF =1/(1-R^2) 式中,R^2是以xj为因变量时对其它自变量回归的复测定系数。VIF越大,该变量与其他的变量的关系越高,多重共线性越严重。如果所有变量最大的VIF超过10,删除最大VIF的变量。

解决方案(利用statsmodels.stats)

利用相关系数删除相关性过高的变量(df中变量先得按IV值从大到小排序)

def get_var_no_colinear(cutoff, df):
    corr_high = df.corr().applymap(lambda x: np.nan if x>cutoff else x).isnull()
    col_all = corr_high.columns.tolist()
    del_col = []
    i = 0
    while i < len(col_all)-1:
        ex_index = corr_high.iloc[:,i][i+1:].index[np.where(corr_high.iloc[:,i][i+1:])].tolist()
        for var in ex_index:
            col_all.remove(var)
        corr_high = corr_high.loc[col_all, col_all]
        i += 1
    return col_all

利用VIF删除导致高共线性的变量

import numpy as np
import pandas as pd
from statsmodels.stats.outliers_influence import variance_inflation_factor
## 每轮循环中计算各个变量的VIF,并删除VIF>threshold 的变量
def vif(X, thres=10.0):
    col = list(range(X.shape[1]))
    dropped = True
    while dropped:
        dropped = False
        vif = [variance_inflation_factor(X.iloc[:,col].values, ix)
               for ix in range(X.iloc[:,col].shape[1])]
        
        maxvif = max(vif)
        maxix = vif.index(maxvif)
        if maxvif > thres:
            del col[maxix]
            print('delete=',X_train.columns[col[maxix]],'  ', 'vif=',maxvif )
            dropped = True
    print('Remain Variables:', list(X.columns[col]))
    print('VIF:', vif)
    return list(X.columns[col]) 

如果对原理和代码有问题。欢迎一起讨论哦,IV值的定义及计算后面再讲哈

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/137450.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • dns备用服务器信息,dns服务器地址(dns首选和备用填多少)

    dns备用服务器信息,dns服务器地址(dns首选和备用填多少)dns服务器地址DNS是计算机域名体系(DomainNameSystem或DomainNameService)的缩写,它是由解析器以及域名服务器组成的。域名服务器是指保存有该网络中所有主机的域名和对应IP地址,并具有将域名转换为IP地址功用的服务器。其中域名有必要对应一个IP地址,而IP地址不一定只对应一个域名。域名体系选用相似目录树的等级结构。域名服务器为客户机/服务器方式中的服务器方,它主要有…

    2022年6月8日
    78
  • C语言优先级顺序表口诀「建议收藏」

    C语言优先级顺序表口诀「建议收藏」一是括号结构体,二是单目运算符,三乘除余四加减;五左右移六大小,七是等于不等于,与异或或位在前;三目赋值与逗号。

    2022年6月16日
    40
  • 远程桌面怎样复制本地文件听语音

    远程桌面怎样复制本地文件听语音

    2021年9月23日
    45
  • idea 最新激活码(注册激活)「建议收藏」

    (idea 最新激活码)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~KU…

    2022年3月22日
    83
  • This Android SDK requires Android Developer Toolkit version 22.6.2 or above.

    This Android SDK requires Android Developer Toolkit version 22.6.2 or above.

    2022年1月12日
    57
  • 图解Java 垃圾回收机制

    图解Java 垃圾回收机制Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决了两个问题:给对象分配内存以及回收分配给对象的内存。垃圾回收机制的引入有效地解决了内存的回收问题使得他们在编写程序的时候不再需要考虑内存管理。本文首先着重介绍了判断一个对象是否可以被回收的两种经典算法,并详述了四种典型的垃圾回收算法的基本思想及其直接应用——垃圾收集器,最后结合内存回收策略介绍了内存分配规则。

    2022年6月11日
    33

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号