TensorFlow中学习率[通俗易懂]

TensorFlow中学习率[通俗易懂]学习率学习率属于超参数。学习率决定梯度下降速度的快慢,学习率越大,速度越快;学习率越小,速度越慢。如果学习率过大,很可能会越过最优值;反而如果学习率过小,优化的效率可能过低,长时间算法无法收敛。所以学习率对于算法性能的表现至关重要。指数衰减学习率指数衰减学习率是在学习率的基础上增加了动态变化的机制,会随着梯度下降变化而动态变化tf.train.expo…

大家好,又见面了,我是你们的朋友全栈君。

学习

学习率属于超参数。学习率决定梯度下降速度的快慢,学习率越大,速度越快;学习率越小,速度越慢。如果学习率过大,很可能会越过最优值;反而如果学习率过小,优化的效率可能过低,长时间算法无法收敛。所以学习率对于算法性能的表现至关重要。

 

 

 

指数衰减学习率

 

指数衰减学习率是在学习率的基础上增加了动态变化的机制,会随着梯度下降变化而动态变化

 

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)

 

  • learn_rate:事先设定的初始学习率
  • global_step:训练轮数
  • decay_steps:衰减速度。staircase=True:代表了完整的使用一遍训练数据所需要的迭代轮数(=总训练样本数/每个batch中的训练样本数)
  • decay_rate:衰减系数
  • staircase:默认为False,此时学习率随迭代轮数的变化是连续的(指数函数);为 True 时,global_step/decay_steps 会转化为整数,此时学习率便是阶梯函数

步骤:

  1. 首先使用较大学习率(目的:为快速得到一个比较优的解);
  2. 然后通过迭代逐步减小学习率(目的:为使模型在训练后期更加稳定);

模板:


global_step = tf.Variable(0)

 

learning_rate = tf.train.exponential_decay(0.1, global_step, 1, 0.96, staircase=True)     #生成学习率

 

learning_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(....., global_step=global_step)  #使用指数衰减学习率

 

实例代码:

TRAINING_STEPS = 100
global_step = tf.Variable(0)
LEARNING_RATE = tf.train.exponential_decay(
    0.1, global_step, 1, 0.96, staircase=True)

x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x)
train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(
    y, global_step=global_step)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(TRAINING_STEPS):
        sess.run(train_op)
        if i % 10 == 0:
            LEARNING_RATE_value = sess.run(LEARNING_RATE)
            x_value = sess.run(x)
            print("After %s iteration(s): x%s is %f, learning rate is %f." %
                  (i + 1, i + 1, x_value, LEARNING_RATE_value))

 

关于global_step的探究:

  • global_step – 用于衰减计算的全局步骤。 一定不为负数。
  • 喂入一次 BACTH_SIZE 计为一次 global_step
  • 每间隔decay_steps次更新一次learning_rate值

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/137629.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号