pytorch之DataLoader

pytorch之DataLoaderpytorch之DataLoader在训练神经网络时,最好是对一个batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。对此,PyTorch提供了DataLoader帮助实现这些功能。Dataset只负责数据的抽象,一次调用__getitem__只返回一个样本。DataLoader的函数定义如下:DataLoader(dataset,batch_size=1,shu…

大家好,又见面了,我是你们的朋友全栈君。

pytorch之DataLoader

在训练神经网络时,最好是对一个batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。对此,PyTorch提供了DataLoader帮助实现这些功能。Dataset只负责数据的抽象,一次调用__getitem__只返回一个样本。

DataLoader的函数定义如下: DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False)

dataset:加载的数据集(Dataset对象)
batch_size:batch size
shuffle::是否将数据打乱
sampler: 样本抽样,后续会详细介绍
num_workers:使用多进程加载的进程数,0代表不使用多进程
collate_fn: 如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可
pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些
drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃

from torch.utils import data
import os
from PIL import  Image
import torch as t
from torchvision import transforms as T
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader

#定义transform1
normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform1  = T.Compose([
         T.RandomResizedCrop(224),
         T.RandomHorizontalFlip(),
         T.ToTensor(),
         normalize,
])

在这里插入图片描述
在这里插入图片描述

#实例化数据集dataset
dataset = ImageFolder('data1/dogcat_2/', transform=transform1)
#利用Dataloader函数加载
dataloader = DataLoader(dataset, batch_size=3, shuffle=True, num_workers=0, drop_last=False)

#取一个batch
dataiter = iter(dataloader)
imgs, labels = next(dataiter)
print(imgs.size()) # batch_size, channel, height, weighttorch.Size([3, 3, 224, 224])
print('*****')
for batch_datas, batch_labels in dataloader:
    print(batch_datas.size(),batch_labels.size())

在这里插入图片描述

transform = T.Compose([
    T.Resize(224), # 缩放图片(Image),保持长宽比不变,最短边为224像素
    T.CenterCrop(224), # 从图片中间切出224*224的图片
    T.ToTensor(), # 将图片(Image)转成Tensor,归一化至[0, 1]
    T.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]) # 标准化至[-1, 1],规定均值和标准差
])

在数据处理中,有时会出现某个样本无法读取等问题,比如某张图片损坏。这时在__getitem__函数中将出现异常,此时最好的解决方案即是将出错的样本剔除。如果实在是遇到这种情况无法处理,则可以返回None对象,然后在Dataloader中实现自定义的collate_fn,将空对象过滤掉。但要注意,在这种情况下dataloader返回的batch数目会少于batch_size。

class DogCat(data.Dataset):
    def __init__(self, root, transforms=None):
        imgs = os.listdir(root)
        self.imgs = [os.path.join(root, img) for img in imgs]
        self.transforms=transforms
        
    def __getitem__(self, index):
        img_path = self.imgs[index]
        label = 0 if 'dog' in img_path.split('/')[-1] else 1
        data = Image.open(img_path)
        if self.transforms:
            data = self.transforms(data)
        return data, label
    
    def __len__(self):
        return len(self.imgs)

   
class NewDogCat(DogCat): # 继承前面实现的DogCat数据集
    def __getitem__(self, index):
        try:
            # 调用父类的获取函数,即 DogCat.__getitem__(self, index)
            return super(NewDogCat,self).__getitem__(index)
        except:
            return None, None

from torch.utils.data.dataloader import default_collate # 导入默认的拼接方式
def my_collate_fn(batch):
    '''
    batch中每个元素形如(data, label)
    '''
    # 过滤为None的数据
    batch = list(filter(lambda x:x[0] is not None, batch))
    if len(batch) == 0: return t.Tensor()
    return default_collate(batch) # 用默认方式拼接过滤后的batch数据

在这里插入图片描述

dataset = NewDogCat('data1/dogcat_wrong/', transforms=transform)
#print(dataset[5])
print('*************')
dataloader = DataLoader(dataset, 2, collate_fn=my_collate_fn,shuffle=True)
for batch_datas, batch_labels in dataloader:
    print(batch_datas.size(),batch_labels.size())

在这里插入图片描述
来看一下上述batch_size的大小。其中第1个的batch_size为1,这是因为有一张图片损坏,导致其无法正常返回。而最后1个的batch_size也为1,这是因为共有9张(包括损坏的文件)图片,无法整除2(batch_size),因此最后一个batch的数据会少于batch_szie,可通过指定drop_last=True来丢弃最后一个不足batch_size的batch。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/138631.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • SpringBoot 单元测试指定运行环境「建议收藏」

    分享知识传递快乐1、通过修改配置文件指定运行环境在配置文件中直接指定运行环境spring:profiles:active:dev这种配置方式是全局的。2、通过启动类配置指定运行环境-Dspring.profiles.active=prod这种配置需要对每个测试方法都得去一一指定,可对同个测试类不同测试方法配置不同运行环境。配置方法:首先Run->EditConfigurations打开如下页面依次按照步骤操作并配置…

    2022年4月13日
    39
  • 操作系统作业之银行家算法(c语言实现)

    操作系统作业之银行家算法(c语言实现)银行家算法分析:银行家算法数据结构:进程数processNum资源类数resourceNum系统剩余可利用资源Available,为一个含有m个元素的数组;最大需求矩阵Max,为一个processNumresourceNum数组进程当前已分配资源数Allocation,为一个processNumresourceNum数组进程尚需要的资源数Need,为一个processNum*re…

    2022年7月22日
    13
  • pycharm2021专业版激活码(JetBrains全家桶)

    (pycharm2021专业版激活码)本文适用于JetBrains家族所有ide,包括IntelliJidea,phpstorm,webstorm,pycharm,datagrip等。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~V…

    2022年3月22日
    393
  • spring循环依赖到底怎么解决的_恋爱循环难吗

    spring循环依赖到底怎么解决的_恋爱循环难吗4.AOP中的循环依赖在看自动代理源码的过程中,突然注意到SmartInstantiationAwareBeanPostProcessor接口中的getEarlyBeanReference方法,它是Spring处理循环依赖时返回**未创建完(只实例化未做依赖注入)**Bean的扩展。关于循环依赖可以去Bean的循环依赖一章去详细了解,这里只做简单的说明。有两个单例Bean,A和B,A中引用了B…

    2022年8月11日
    9
  • 安装完 socket.io 以后,客户端 404 问题

    安装完 socket.io 以后,客户端 404 问题

    2022年2月12日
    44
  • 数据库设计工具推荐

    数据库设计工具推荐要是MySQL推荐Workbench。PD(PowerDesigner)和ERWin。大家是这样介绍的,需要的可以使用下看看。

    2022年7月4日
    33

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号