AVX2指令集浮点乘法性能分析

AVX2指令集浮点乘法性能分析AVX2指令集浮点乘法性能分析一、AVX2指令集介绍二、代码实现0.数据生成1.普通连乘2.AVX2指令集乘法:单精度浮点(float)3.AVX2指令集乘法:双精度浮点(double)三、性能测试测试环境计时方式测试内容进行性能测试第一次测试第二次测试四、总结个人猜测原因:一、AVX2指令集介绍AVX2是SIMD(单指令多数据流)指令集,支持在一个指令周期内同时对256位内存进行操作。包含乘法,加法,位运算等功能。下附Intel官网使用文档。Intel®IntrinsicsGuide我

大家好,又见面了,我是你们的朋友全栈君。

一、AVX2指令集介绍

AVX2是SIMD(单指令多数据流)指令集,支持在一个指令周期内同时对256位内存进行操作。包含乘法,加法,位运算等功能。下附Intel官网使用文档。
Intel® Intrinsics Guide

我们本次要用到的指令有 **__m256 _mm256_mul_ps(__m256 a, __m256 b), __m256d_mm256_mul_pd(__m256d a, __m256d b)**等,(p代表精度precision,s代表single,d代表double)

它们可以一次取256位的内存,并按32/64位一个浮点进行乘法运算。下附官网描述。

Synopsis

__m256d _mm256_mul_pd (__m256d a, __m256d b)

#include <immintrin.h>

Instruction: vmulpd ymm, ymm, ymm

CPUID Flags: AVX

Description

Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

Operation

FOR j := 0 to 3
	i := j*64
	dst[i+63:i] := a[i+63:i] * b[i+63:i]
ENDFOR
dst[MAX:256] := 0

Performance

Architecture Latency Throughput (CPI)
Icelake 4 0.5
Skylake 4 0.5
Broadwell 3 0.5
Haswell 5 0.5
Ivy Bridge 5 1

二、代码实现

0. 数据生成

为了比较结果,我们用1+1e-8填充。这里利用模版兼容不同数据类型。由于AVX2指令集一次要操作多个数据,为了防止访存越界,我们将大小扩展到256的整数倍位比特,也就是32字节的整数倍。

uint64_t lowbit(uint64_t x)
{ 
   
    return x & (-x);
}

uint64_t extTo2Power(uint64_t n, int i)//arraysize datasize
{ 
   
    while(lowbit(n) < i)
        n += lowbit(n);
    return n;
}
template <typename T>
T* getArray(uint64_t size)
{ 
   
    uint64_t ExSize = extTo2Power(size, 32/sizeof(T));
    T* arr = new T[ExSize];
    for (uint64_t i = 0; i < size; i++)
        arr[i] = 1.0+1e-8;
    for (uint64_t i = size; i < ExSize; i++)
        arr[i] = 1.0;
    return arr;
}
}

1. 普通连乘

为了比较性能差异,我们先实现一份普通连乘。这里也使用模版。

template <typename T>
T simpleProduct(T* arr, uint64_t size)
{ 
   
    T product = 1;
    for (uint64_t i = 0; i < size; i++)
        product *= arr[i];
    return product;
}

2. AVX2指令集乘法:单精度浮点(float)

这里我们预开一个avx2的整形变量,每次从数组中取8个32位浮点,乘到这个变量上,最后在对这8个32位浮点进行连乘。

float avx2Product(float* arr, uint64_t size)
{ 
   
    float product[8] = { 
   1};
    __m256 product256 = _mm256_setr_ps(1, 1, 1, 1, 1, 1, 1, 1);
    __m256 load256 = _mm256_setzero_ps();
    for (uint64_t i = 0; i < size; i += 8)
    { 
   
        load256 = _mm256_loadu_ps(&arr[i]);
        product256 = _mm256_mul_ps(product256, load256);
    }
    _mm256_storeu_ps(product, product256);
    product[0] *= product[1] * product[2] * product[3] * product[4] * product[5] * product[6] * product[7];
    return product[0];
}

3. AVX2指令集乘法:双精度浮点(double)

double avx2Product(double* arr, uint64_t size)
{ 
   
    double product[4] = { 
   1};
    __m256d product256 = _mm256_setr_pd(1, 1, 1, 1);
    __m256d load256 = _mm256_setzero_pd();
    for (uint64_t i = 0; i < size; i += 4)
    { 
   
        load256 = _mm256_loadu_pd(&arr[i]);
        product256 = _mm256_mul_pd(product256, load256);
    }
    _mm256_storeu_pd(product, product256);
    product[0] *= product[1] * product[2] * product[3];
    return product[0];
}

三、性能测试

测试环境

Device Description
CPU Intel Core i9-9880H 8-core 2.3GHz
Memory DDR4-2400MHz Dual-Channel 32GB
complier Apple Clang-1300.0.29.30

计时方式

利用chrono库获取系统时钟计算运行时间,精确到毫秒级

uint64_t getTime()
{ 
   
    uint64_t timems = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
    return timems;
}

测试内容

连乘1e8遍,答案是 ( 1 + 1 1 0 8 ) 1 0 8 {(1+\frac{1}{10^8})}^{10^8} (1+1081)108,理论上应该是一个比较接近 e e e的值, 分别测试float和double。

	uint64_t N = 1e8;
    // compare the performance of simpleProduct and avx2Product
    uint64_t start, end;

    //compare float
    cout << "compare float product" << endl;
    float* arr = getArray<float>(N);
    start = getTime();
    float simpleProductResult = simpleProduct(arr, N);
    end = getTime();
    cout << "Simple product: " << simpleProductResult << endl;
    cout << "Time: " << end - start << " ms" << endl;
    cout << endl;

    start = getTime();
    float avx2ProductResult = avx2Product(arr, N);
    end = getTime();
    cout << "AVX2 product: " << avx2ProductResult << endl;
    cout << "Time: " << end - start << " ms" << endl;
    cout << endl;

    delete[] arr;

    //compare double
    cout << "compare double product" << endl;
    double* arr2 = getArray<double>(N);
    start = getTime();
    double simpleProductResult2 = simpleProduct(arr2, N);
    end = getTime();
    cout << "Simple product: " << simpleProductResult2 << endl;
    cout << "Time: " << end - start << " ms" << endl;
    cout << endl;

    start = getTime();
    double avx2ProductResult2 = avx2Product(arr2, N);
    end = getTime();
    cout << "AVX2 product: " << avx2ProductResult2 << endl;
    cout << "Time: " << end - start << " ms" << endl;
    cout << endl;

    delete[] arr2;

进行性能测试

第一次测试

  • 测试命令
g++ -mavx2 avx_product.cpp 
./a.out
  • 测试结果
方法 耗时(ms)
AVX2乘法 单精度 57
普通乘法 单精度 232
AVX2乘法 双精度 121
普通乘法 双精度 243

在这里插入图片描述

这里能看到单精度下已经出现了比较明显的误差,同时由于CPU内部没有普通的单精度浮点运算器,所以单精度运算和双精度耗时所差无几。

第二次测试

  • 测试命令
    现在我们再开启O2编译优化试一试:
g++ -O2 -mavx2 avx_product.cpp 
./a.out
  • 测试结果
方法 耗时(ms)
AVX2乘法 单精度 19
普通乘法 单精度 102
AVX2乘法 双精度 44
普通乘法 双精度 129

在这里插入图片描述

四、总结

经过几次测试,我们可以大概得出,AVX指令集在浮点的运算上有比较高的性能,而整形运算的提升则没那么明显,同时AVX2执行一次运算大致会消耗双精度运算2倍的时间,所以如果需要运算的数据小于2个,则用AVX2得不到提升。

个人猜测原因:

  1. CPU内部整形运算器多于浮点运算器,所以启用优化时整形普通运算能得到更多提升。
  2. AVX2指令集专门针对浮点型进行过优化。使得运算逻辑门的关键路径长度小于普通浮点运算。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/139180.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 《书谱》(书法理论知识)

    ٩(๑•ㅂ•)۶  夫自古之善书者,汉魏有钟、张之绝,晋末称二王之妙。王羲之云:“顷寻诸名书,钟张信为绝伦,其余不足观。”可谓钟、张云没,而羲、献继之。又云:“吾书比之钟张,钟当抗行,或谓过之。张草犹当雁行。然张精熟,池水尽墨,假令寡人耽之若此,未必谢之。”此乃推张迈钟之意也。考其专擅,虽未果于前规;摭以兼通,故无惭于即事。  评者云:“彼之四贤,古今特绝;而今不逮古,古质而今研。”夫质以代兴,妍因俗易。虽书契之作,适以记言;而淳醨一迁,质文三变,驰鹜沿革,物理常然。贵能古不乖时,今不同弊,所谓“文质彬

    2022年4月13日
    39
  • 主流量化交易的几种策略模型

    主流量化交易的几种策略模型量化策略可以简单分为三类,分别是Alpha策略、CTA策略以及高频交易策略1.Alpha策略Alpha策略包含不同类别:按照研究内容来分,可分为基本面Alpha(或者叫财务Alpha)和量价Alpha。业内普遍不会将这两种Alpha完全隔离开。但是不同团队会按照其能力、擅长方向以及信仰,在做因子上有所偏向。有的团队喜欢用数据挖掘的方式做量价因子,而有的团队喜欢从基本面财务逻辑的角度出发,精细地筛选财务因子。。按照是否对冲可以分为两类。全对冲的叫做Alpha策略,不对冲的在市面上常被称作指

    2022年6月26日
    39
  • 2021.12.13idea激活码_最新在线免费激活

    (2021.12.13idea激活码)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月30日
    47
  • idea 创建 JavaWeb 项目(主要 idea2022)

    idea 创建 JavaWeb 项目(主要 idea2022)关于idea如何新建JavaWeb项目的详细步骤,由于2022版本新建有所改动,所以需要一篇新的博客来帮助新手

    2022年9月20日
    0
  • 脚本是什么?[通俗易懂]

    脚本是什么?[通俗易懂]初次接触“脚本”一词并不知道这一听似非常高大上的东西是什么,尔后逐渐接触,虽有了解,但也没有仔细地总结和思考过,今日百度了一下,在此小小总结。“脚本”其实就是一段代码,一个程序。这与我们学习C语言时,写的第一个“helloworld”显示程序没有太大的区别,那为什么这个向程序之神打招呼的“helloworld”程序我们不称其为脚本呢?因为“脚本”有这些特别之处:1、脚本语法比较简单…

    2025年7月26日
    1
  • 谷粒商城笔记-基础篇-2(2/4)

    谷粒商城笔记-基础篇-2(2/4)1.整体介绍1)安装vagrant2)安装Centos7$vagrantinitcentos/7A`Vagrantfile`hasbeenplacedinthisdirectory.Youarenowreadyto`vagrantup`yourfirstvirtualenvironment!PleasereadthecommentsintheVagrantfileaswellasdocumentationon`vagrantup

    2022年6月5日
    30

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号