简单的有监督学习实例——简单线性回归[通俗易懂]

简单的有监督学习实例——简单线性回归[通俗易懂]sklearn.linear_model.LinearRegression线性回归https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html首先,要创建一组数据,随机选取一组x数据,然后计算出它在2x-1这条线附近对应的数据,画出其散点图:#演示简单的线性回归i…

大家好,又见面了,我是你们的朋友全栈君。

一、 sklearn.linear_model.LinearRegression 线性回归

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

首先,要创建一组数据,随机选取一组x数据,然后计算出它在2x-1这条线附近对应的数据,画出其散点图:

# 演示简单的线性回归
import matplotlib.pyplot as plt
import numpy as np
rng = np.random.RandomState(42)
x = 10 * rng.rand(50)
y = 2 * x - 1 + rng.randn(50)   # 在 2x-1上下附近的x对应的值
plt.scatter(x, y)

在这里插入图片描述
接下来,就按照步骤一步步实现:

1、选择模型类:

在这个例子中,我们想要计算一个简单的线性回归模型,可以直接导入线性回归模型类:

from sklearn.linear_model import LinearRegression
2、选择模型超参数

在上一步选择好模型类之后,还有许多的参数需要配置。比如下面的:

  • 拟合偏移量(直线的截距)
  • 对模型进行归一化处理
  • 对特征进行预处理以提高模型灵活性
  • 在模型中使用哪两种正则化类型
  • 使用多少模型组件

对于这个线性回归实例,可以实例化 LinearRegression 类并用 fit_intercept 超参数设置是否想要拟合直线的截距。

>>>model = LinearRegression(fit_intercept=True)  # fit_intercept为 True 要计算此模型的截距
>>>model
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
         normalize=False)

可以看到model 的参数配置

3、将数据整理成特征矩阵和目标数组

根据Scikit-Learn的数据表示方法,它需要二维特征矩阵和一维目标数组。现在,我们已经有了长度为 n_samples 的目标数组,但还需要将数据 x 整理成 [n_samples, n_features] 的形式。 np.newaxis 是插入新维度。

>>>X = x[:, np.newaxis]  # 将 x 数据整理成 [n_samples, n_features] 的形式
>>>X.shape
(50, 1)
4、用模型拟合数据
model.fit(X, y)   # fit 拟合后的结果存在model属性中

所有通过fit方法获得的模型参数都带一条下划线。

>>>model.coef_     # 拟合的直线斜率
array([1.9776566])
>>>model.intercept_     # 拟合的直线截距
-0.9033107255311164

可以发现,拟合出来的直线斜率和截距和前面样本数据定义(斜率2,截距-1)非常接近。

5、预测新数据的标签

模型训练出来以后,有监督学习的主要任务变成了对不属于训练集的新数据进行预测。用 predict() 方法进行预测。“新数据”是特征矩阵的 x 的坐标值,我么需要用模型预测出目标数组的 y 轴坐标:

xfit = np.linspace(-1, 11)   # 产生新数据,是特征矩阵的 x 的坐标值

将这些 x 值转换成[n_samples, n_features] 的特征矩阵形式,

Xfit = xfit[:, np.newaxis]   # 将数据转变为[n_samples, n_features] 的形式
yfit = model.predict(Xfit)   # 用模型预测目标数组的 y 轴坐标

然后,把原始数据和拟合结果都可视化出来:

plt.scatter(x, y)
plt.plot(xfit, yfit)

在这里插入图片描述

二、鸢尾花数据分类

问题示例:如何为鸢尾花数据集建立模型,先用一部分数据进行训练,再用模型预测出其他样本的标签?
下面使用高斯朴素贝叶斯方法完成任务。由于需要用模型之前没有接触过的数据评估它的训练效果,因此得先将数据分割成训练集和测试集。可以借助 train_test_split 函数分割很方便:
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(x_iris,
									 y_iris, random_state=1)   # 对数据进行分类
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()     # 初始化模型
model.fit(xtrain, ytrain)  # 用模型拟合数据
y_model = model.predict(xtest)   # 对新数据进行预测
from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)  # 输出模型预测准确率
0.9736842105263158

理清楚一下上面程序的过程:

  1. 把数据集分类成 xtrain, xtest, ytrain, ytest
  2. 用训练集数据 xtrain, ytrain 来进行拟合
  3. 根据拟合的结果来对 xtest 数据进行预测
  4. 得出预测结果 y_model 和原来结果 y_test 的准确率

三、鸢尾花数据降维

PCA: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
PCA.fit_transform : https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit_transform
sns.lmplot() : https://seaborn.pydata.org/generated/seaborn.lmplot.html

from sklearn.decomposition import PCA
model = PCA(n_components=2)   # 设置超参数,初始化模型
model.fit(x_iris)    # 拟合数据,这里不用y变量
x_2d = model.transform(x_iris)   # 将数据转化成二维
iris['PCA1'] = x_2d[:, 0]
iris['PCA2'] = x_2d[:, 1]
sns.lmplot('PCA1', 'PCA2', hue='species', data=iris, fit_reg=False)

在这里插入图片描述

四、鸢尾花数据分类

对鸢尾花数据进行聚类。聚类算法是对没有任何标签的数据集进行分组。
GaussianMixture: https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html

from sklearn.mixture import GaussianMixture
model = GaussianMixture(n_components=3, covariance_type='full')
model.fit(x_iris)
y_gmm = model.predict(x_iris)
iris['cluster'] = y_gmm
sns.lmplot('PCA1', 'PCA2', hue='species', data=iris, col='cluster', fit_reg=False)

在这里插入图片描述
可以看出,第二幅图中的花的颜色还有一点混淆。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/140456.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 郑州java工程师待遇怎么样_Java工程师工资待遇怎么样?

    郑州java工程师待遇怎么样_Java工程师工资待遇怎么样?Java工程师的工资待遇怎么样?一般情况下的JAVA软件工程师是分四个等级,从软件技术员到助理软件工程师,再到软件工程师,最后成为高级软件工程师。通常来说,具有3—5年开发经验的工程师,拥有年薪20万元是很正常的一个薪酬水平。80%的学生毕业后年薪都超过了10万元。Java工程师的工资待遇怎么样?首先java基本功需要具备,比如对一些简单的多线程,以及对常见的java框架有一定的修改,或者定制功能…

    2022年9月23日
    5
  • Negative Sampling 负采样详解[通俗易懂]

    Negative Sampling 负采样详解[通俗易懂]在word2vec中,为了简化训练的过程,经常会用到NegativeSampling负采样这个技巧,这个负采样到底是怎么样的呢?之前在我的博文word2vec算法理解和数学推导中对于word2vec有了很详细的数学推导,这里主要讲解一下负采样是如何降低word2vec的复杂度的。首先我们直接写出word2vec的目标函数,假设有一句话:query=w1,w2,w3,..,wnquery=…

    2022年6月26日
    85
  • phpstrom2021 激活码【2021免费激活】

    (phpstrom2021 激活码)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月21日
    50
  • 通俗理解kaggle比赛大杀器xgboost

    通俗理解kaggle比赛大杀器xgboost通俗理解kaggle比赛大杀器xgboost说明:若出现部分图片无法正常显示而影响阅读,请以此处的文章为准:xgboost题库版。时间:二零一九年三月二十五日。0前言xgboost一直在竞赛江湖里被传为神器,比如时不时某个kaggle/天池比赛中,某人用xgboost于千军万马中斩获冠军。而我们的机器学习课…

    2022年4月27日
    40
  • Day.js 1.8.12 发布,轻量级时间和日期 JavaScript 库

    Day.js 1.8.12 发布,轻量级时间和日期 JavaScript 库Day.js 1.8.12 发布,轻量级时间和日期 JavaScript 库

    2022年4月21日
    55
  • ICMP协议详解

    ICMP协议详解ICMP协议详解ICMP协议是一个网络层协议。一个新搭建好的网络,往往需要先进行一个简单的测试,来验证网络是否畅通;但是IP协议并不提供可靠传输。如果丢包了,IP协议并不能通知传输层是否丢包以及丢包的原因。所以我们就需要一种协议来完成这样的功能–ICMP协议。ICMP协议的功能ICMP协议的功能主要有:1.确认IP包是否成功到达目标地址2.通知在发送过程中IP包被…

    2022年7月12日
    23

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号