spark中flatMap函数用法–spark学习(基础)「建议收藏」

spark中flatMap函数用法–spark学习(基础)「建议收藏」说明在spark中map函数和flatMap函数是两个比较常用的函数。其中map:对集合中每个元素进行操作。flatMap:对集合中每个元素进行操作然后再扁平化。理解扁平化可以举个简单例子valarr=sc.parallelize(Array((“A”,1),(“B”,2),(“C”,3)))arr.flatmap(x=>(x._1+x._2)).foreach(println)输出

大家好,又见面了,我是你们的朋友全栈君。

说明

在spark中map函数和flatMap函数是两个比较常用的函数。其中
map:对集合中每个元素进行操作。
flatMap:对集合中每个元素进行操作然后再扁平化。
理解扁平化可以举个简单例子

val arr=sc.parallelize(Array(("A",1),("B",2),("C",3)))
arr.flatmap(x=>(x._1+x._2)).foreach(println)

输出结果为

A
1
B
2
C
3

如果用map

val arr=sc.parallelize(Array(("A",1),("B",2),("C",3)))
arr.map(x=>(x._1+x._2)).foreach(println)

输出结果

A1
B2
C3

所以flatMap扁平话意思大概就是先用了一次map之后对全部数据再一次map。

实际使用场景

这个场景是我曾经在写代码过程中遇到的难题,在字符串中如何统计相邻字符对出现的次数。意思就是如果有A;B;C;D;B;C字符串,则(A,B),(C,D),(D,B)相邻字符对出现一次,(B,C)出现两次。
如有数据

A;B;C;D;B;D;C
B;D;A;E;D;C
A;B

统计相邻字符对出现次数代码如下

data.map(_.split(";")).flatMap(x=>{
      for(i<-0 until x.length-1) yield (x(i)+","+x(i+1),1)
    }).reduceByKey(_+_).foreach(println)

输出结果为

(A,E,1)
(E,D,1)
(D,A,1)
(C,D,1)
(B,C,1)
(B,D,2)
(D,C,2)
(D,B,1)
(A,B,2)

此例子就是充分运用了flatMap的扁平化功能。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/140836.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号