python粒子群算法的实现「建议收藏」

python粒子群算法的实现「建议收藏」参考博客:http://blog.csdn.net/zuochao_2013/article/details/53431767?ref=myreadhttp://blog.csdn.net/chen_jp/article/details/7947059算法介绍粒子群算法(particleswarmoptimization,PSO)由Kennedy和Eberhart在1995年…

大家好,又见面了,我是你们的朋友全栈君。

参考博客:

http://blog.csdn.net/zuochao_2013/article/details/53431767?ref=myread

http://blog.csdn.net/chen_jp/article/details/7947059

算法介绍

 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法对于Hepper的模拟鸟群(鱼群)的模型进行修正,以使粒子能够飞向解空间,并在最好解处降落,从而得到了粒子群优化算法。同遗传算法类似,也是一种基于群体叠代的,但并没有遗传算法用的交叉以及变异,而是粒子在解空间追随最优的粒子进行搜索

 PSO的优势在于简单,容易实现,无需梯度信息,参数少,特别是其天然的实数编码特点特别适合于处理实优化问题。同时又有深刻的智能背景,既适合科学研究,又特别适合工程应用。
 设想这样一个场景:一群鸟在随机的搜索食物。在这个区域里只有一块食物,所有的鸟都不知道食物在哪。但是它们知道自己当前的位置距离食物还有多远。那么找到食物的最优策略是什么?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

算法流程

参数定义每个寻优的问题解都被想像成一只鸟,称为“粒子”。所有粒子都在一个d维空间进行搜索。所有的粒子都由一个fitness-function确定适应值以判断目前的位置好坏。每一个粒子必须赋予记忆功能,能记住所搜寻到的最佳位置。每一个粒子还有一个速度以决定飞行

的距离和方向。这个速度根据它本身的飞行经验以及同伴的飞行经验进行动态调整。

 

在d维空间中,有m个粒子,在某一时刻时,

粒子i的位置为:

python粒子群算法的实现「建议收藏」

粒子i的速度为:

python粒子群算法的实现「建议收藏」

粒子i经过的历史最好位置:

python粒子群算法的实现「建议收藏」

种群所经过的历史最好位置:

python粒子群算法的实现「建议收藏」

PSO的关系公式

鸟在捕食的过程中会根据自己的经验以及鸟群中的其他鸟的位置决定自己的速度,根据当前的位置和速度,可以得到下一刻的位置,这样每只鸟通过向自己和鸟群学习不断的更新自己的速度位置,最终找到食物,或者离食物足够近的点。

 

t时刻到t+1时刻的速度:

python粒子群算法的实现「建议收藏」

下一时刻位置:

python粒子群算法的实现「建议收藏」

python粒子群算法的实现「建议收藏」

 

python粒子群算法的实现「建议收藏」

 

以求解函数最小值为例:

python粒子群算法的实现「建议收藏」

种群产生:随机产生处在[-10, 10]范围内的随机点,速度初始的为[0,1]

 在本例中,适应度就是函数值,适应度越小越好。在粒子群算法中,适应度不一定要越大越好,而是确定适应度的好坏,只需要根据是适应度好坏确定最佳位置。

 在迭代过程中,会有粒子跑出范围,在这种情况下,一般不强行将粒子重新拉回到初始化解空间。因为即使粒子跑出空间,随着迭代的进行,如果在初始化空间内有更好的解存在,那么粒子也可以自行返回到初始化空间。研究表明,即使将初始化空间不设为问题的约束空间,粒子也可能找到最优解

 

import numpy as np
import matplotlib.pyplot as plt


class PSO(object):
    def __init__(self, population_size, max_steps):
        self.w = 0.6  # 惯性权重
        self.c1 = self.c2 = 2
        self.population_size = population_size  # 粒子群数量
        self.dim = 2  # 搜索空间的维度
        self.max_steps = max_steps  # 迭代次数
        self.x_bound = [-10, 10]  # 解空间范围
        self.x = np.random.uniform(self.x_bound[0], self.x_bound[1],
                                   (self.population_size, self.dim))  # 初始化粒子群位置
        self.v = np.random.rand(self.population_size, self.dim)  # 初始化粒子群速度
        fitness = self.calculate_fitness(self.x)
        self.p = self.x  # 个体的最佳位置
        self.pg = self.x[np.argmin(fitness)]  # 全局最佳位置
        self.individual_best_fitness = fitness  # 个体的最优适应度
        self.global_best_fitness = np.min(fitness)  # 全局最佳适应度

    def calculate_fitness(self, x):
        return np.sum(np.square(x), axis=1)

    def evolve(self):
        fig = plt.figure()
        for step in range(self.max_steps):
            r1 = np.random.rand(self.population_size, self.dim)
            r2 = np.random.rand(self.population_size, self.dim)
            # 更新速度和权重
            self.v = self.w*self.v+self.c1*r1*(self.p-self.x)+self.c2*r2*(self.pg-self.x)
            self.x = self.v + self.x
            plt.clf()
            plt.scatter(self.x[:, 0], self.x[:, 1], s=30, color='k')
            plt.xlim(self.x_bound[0], self.x_bound[1])
            plt.ylim(self.x_bound[0], self.x_bound[1])
            plt.pause(0.01)
            fitness = self.calculate_fitness(self.x)
            # 需要更新的个体
            update_id = np.greater(self.individual_best_fitness, fitness)
            self.p[update_id] = self.x[update_id]
            self.individual_best_fitness[update_id] = fitness[update_id]
            # 新一代出现了更小的fitness,所以更新全局最优fitness和位置
            if np.min(fitness) < self.global_best_fitness:
                self.pg = self.x[np.argmin(fitness)]
                self.global_best_fitness = np.min(fitness)
            print('best fitness: %.5f, mean fitness: %.5f' % (self.global_best_fitness, np.mean(fitness)))


pso = PSO(100, 100)
pso.evolve()
plt.show()

python粒子群算法的实现「建议收藏」

 

 

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/140989.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • BCG网格控件单独设置颜色

    BCG网格控件单独设置颜色源码下载:http://download.csdn.net/detail/he_zhidan/8009531

    2022年10月8日
    7
  • SSRF漏洞挖掘的思路与技巧

    SSRF漏洞挖掘的思路与技巧

    2021年6月28日
    74
  • 项目管理知识体系五大过程组(项目管理10大知识领域)

    信息系统项目管理师属于计算机技术与软件专业技术资格(水平)考试五大高级资格考试中的一项,是信息系统建设领域的高级项目经理资质申报的直接性前提条件。通过本考试的合格人员能够掌握信息系统项目管理的知识体系,具有高级工程师的实际工作能力和业务水平。通过本考试的基本用途有以下2个:1、评职称:此证书在国企和事业单位可以评职称。2、申报项目经理:此证书可在自己所在企业申报系统集成项目经理,如果…

    2022年4月11日
    99
  • 面试之Solr&Elasticsearch[通俗易懂]

    面试之Solr&Elasticsearch[通俗易懂]面试之Solr&Elasticsearch

    2022年4月23日
    61
  • JsonPath使用

    JsonPath使用JSONPath-是xpath在json的应用。xml最大的优点就有大量的工具可以分析,转换,和选择性的提取文档中的数据。XPath是这些最强大的工具之一。如果可以使用xpath来解析json,以下的问题可以被解决: 1,数据不使用特殊的脚本,可以在客户端交互的发现并取并获取。2,客户机请求的JSON数据可以减少到服务器上的相关部分,这样可以最大限度地减少服务器响应的带宽使用…

    2022年6月18日
    32
  • 关于@NotNull 和 @Nullable

    关于@NotNull 和 @Nullable阅读spring源码发现里面用到两个注解@NotNull和@Nullable,现在做一个简单的分析参考文档:避免Java应用中NullPointerException的技巧和最佳实践安卓中的@Nullable和NotNull注释在写程序的时候你可以定义是否可为空指针。通过使用像@NotNull和@Nullable之类的annotation来声明一个方法是否是空指针安全的。…

    2022年6月12日
    37

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号