resnet18模型

resnet18模型结构ResNet18((conv1):Conv2D(3,64,kernel_size=[3,3],padding=1,data_format=NCHW)(bn1):BatchNorm2D(num_features=64,momentum=0.9,epsilon=1e-05)(relu):ReLU()(avagPool):AdaptiveAvgPool2D(output_size=1)(classifier):Linear(in_features=512

大家好,又见面了,我是你们的朋友全栈君。

睡觉

结构

ResNet18(
  (conv1): Conv2D(3, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
  (bn1): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
  (relu): ReLU()
  (avagPool): AdaptiveAvgPool2D(output_size=1)
  (classifier): Linear(in_features=512, out_features=1000, dtype=float32)
  (layer1): Sequential(
    (0): Block(
      (conv1): Conv2D(64, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(64, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
    (1): Block(
      (conv1): Conv2D(64, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(64, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
  )
  (layer2): Sequential(
    (0): Block(
      (conv1): Conv2D(64, 128, kernel_size=[3, 3], stride=[2, 2], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(128, 128, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Sequential(
        (0): Conv2D(64, 128, kernel_size=[1, 1], stride=[2, 2], data_format=NCHW)
        (1): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      )
    )
    (1): Block(
      (conv1): Conv2D(128, 128, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(128, 128, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
  )
  (layer3): Sequential(
    (0): Block(
      (conv1): Conv2D(128, 256, kernel_size=[3, 3], stride=[2, 2], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(256, 256, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Sequential(
        (0): Conv2D(128, 256, kernel_size=[1, 1], stride=[2, 2], data_format=NCHW)
        (1): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      )
    )
    (1): Block(
      (conv1): Conv2D(256, 256, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(256, 256, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
  )
  (layer4): Sequential(
    (0): Block(
      (conv1): Conv2D(256, 512, kernel_size=[3, 3], stride=[2, 2], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(512, 512, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Sequential(
        (0): Conv2D(256, 512, kernel_size=[1, 1], stride=[2, 2], data_format=NCHW)
        (1): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      )
    )
    (1): Block(
      (conv1): Conv2D(512, 512, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(512, 512, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
  )
)

Process finished with exit code 0

代码

import paddle
import paddle.nn as nn


class Identity(nn.Layer):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x


class Block(nn.Layer):
    def __init__(self, in_dim, out_dim, stride):
        super().__init__()
        self.conv1 = nn.Conv2D(in_dim, out_dim, 3, stride, 1, bias_attr=False)
        self.bn1 = nn.BatchNorm2D(out_dim)
        self.conv2 = nn.Conv2D(out_dim, out_dim, 3, 1, 1, bias_attr=False)
        self.bn2 = nn.BatchNorm2D(out_dim)
        self.relu = nn.ReLU()
        if stride == 2 or in_dim != out_dim:
            self.downsample = nn.Sequential(
                *[nn.Conv2D(in_dim, out_dim, 1, stride, bias_attr=False), nn.BatchNorm2D(out_dim)])
        else:
            self.downsample = Identity()

    def forward(self, x):
        h = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        identity = self.downsample(h)
        x = x + identity
        x = self.relu(x)
        return x


class ResNet18(nn.Layer):
    def __init__(self, in_dim=64, num_classes=1000):
        super().__init__()
        self.in_dim = in_dim  # 差点忘了这一行
        #     stem
        self.conv1 = nn.Conv2D(in_channels=3, out_channels=in_dim, kernel_size=3, stride=1, padding=1, bias_attr=False)
        self.bn1 = nn.BatchNorm2D(in_dim)
        self.relu = nn.ReLU()
        #     head
        self.avagPool = nn.AdaptiveAvgPool2D(1)
        self.classifier = nn.Linear(512, num_classes)
        # blocks
        self.layer1 = self.makelayer(64, 2, 1)
        self.layer2 = self.makelayer(128, 2, 2)
        self.layer3 = self.makelayer(256, 2, 2)
        self.layer4 = self.makelayer(512, 2, 2)

    def makelayer(self, out_dim, n_blocks, stride):
        layer_list = []
        layer_list.append(Block(self.in_dim, out_dim, stride))  # 哦对,这里的self.in_dim是这个类的,不是这个函数的.
        self.in_dim = out_dim
        for i in range(1, n_blocks):
            layer_list.append(Block(self.in_dim, out_dim, stride=1))
        return nn.Sequential(*layer_list)

    def forward(self, x):
        x=self.conv1(x)
        x=self.bn1(x)
        x=self.relu(x)

        #blocks
        x=self.layer1(x)
        x=self.layer2(x)
        x=self.layer3(x)
        x=self.layer4(x)

        #head
        x=self.avagPool(x)
        # print("preflatten:",x.shape)
        x=x.flatten(1)
        # print("flatten:",x.shape)
        x=self.classifier(x)
        # print("classifier:",x.shape)
        return x
def main():
    model=ResNet18()
    x=paddle.randn([2,3,32,32])
    out=model(x)
    print(model)
    # print("x.shape:",x.shape)
if __name__ == "__main__":
    main()
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141235.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java获取当前系统时间毫秒值_java 当前日期

    java获取当前系统时间毫秒值_java 当前日期获取当前时间的方法 //第一种方法longtotalMilliSeconds=System.currentTimeMillis(); //第二种方法(常用)Datedate=newDate();           date.getTime();获取时间的毫秒值//第一种方法//获取00:00:00时的毫秒数Strings=D…

    2025年8月26日
    9
  • java项目中的classpath到底指向的哪里[通俗易懂]

    今天在项目里看到好多地方都用到了类路径,并且自己对路径还不是很清楚,所以就在网上百度了一下!上面图片的意思简单来说,就是classpath只能表示lib目录和WEB-inf/classes路径下的文件,calsspath不能表示的src路径下面的文件,但是从项目结构来看,配置文件一般是不放在放在WEB-INF下面啊,并且也没有看到classes路径,lib目录不是放依赖ja…

    2022年4月4日
    115
  • python用turtle画夏日泳池

    python用turtle画夏日泳池

    2021年3月12日
    194
  • countdowntimer_TIMESTAMPDIFF

    countdowntimer_TIMESTAMPDIFF需求:加载某一个界面,在页面中待5秒后再关闭效果图如下:设置了一个点击事件,当文字显示为Skipactivity时,点击跳转界面。代码及介绍如下图:核心功能代码如下Android自带的CountDownTimer这个工具类,也是通过Handler和子线程来实现的。//倒计时工具类CountDownTimer//CountDownTimer的构造方法有两个参数…

    2022年9月18日
    3
  • MyBatisPlus–逻辑删除「建议收藏」

    MyBatisPlus–逻辑删除「建议收藏」逻辑删除开发系统时,有时候在实现功能时,删除操作需要实现逻辑删除,所谓欧吉删除就是将数据标记为删除,而并非真正的物理删除(非DELETE操作),查询时需要携带状态条件,确保被标记的数据不被查询,这样做的目的就是避免数据被真正的删除。配置application.properties#删除状态值为1mybatis-plus.global-config.db-config.logic-del…

    2022年5月5日
    76
  • java入门编程(菜鸟教程)

    java入门编程(菜鸟教程)1.创建一个java程序的步骤a打开editplus软件,选择左上角的file选项,在弹出来的菜单中选择new然后再从弹出来的菜单中选择normaltextb按住ctrl+s快捷键,保存。1选择要保存的位置2给文件命名(以大写的字母开头)3选择文件的后缀,以.java后缀结尾c进行代码的编写,所有字符我们必须都是英文输入状态下的d打开控制台(win+r在弹出左下角的命令行中输入cmd)e找到java源文件的位置,我们使用cd命令定位到我们源文件的文件夹(我们可以在打开的源文件文件夹地址栏

    2022年5月26日
    41

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号