resnet18模型

resnet18模型结构ResNet18((conv1):Conv2D(3,64,kernel_size=[3,3],padding=1,data_format=NCHW)(bn1):BatchNorm2D(num_features=64,momentum=0.9,epsilon=1e-05)(relu):ReLU()(avagPool):AdaptiveAvgPool2D(output_size=1)(classifier):Linear(in_features=512

大家好,又见面了,我是你们的朋友全栈君。

睡觉

结构

ResNet18(
  (conv1): Conv2D(3, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
  (bn1): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
  (relu): ReLU()
  (avagPool): AdaptiveAvgPool2D(output_size=1)
  (classifier): Linear(in_features=512, out_features=1000, dtype=float32)
  (layer1): Sequential(
    (0): Block(
      (conv1): Conv2D(64, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(64, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
    (1): Block(
      (conv1): Conv2D(64, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(64, 64, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=64, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
  )
  (layer2): Sequential(
    (0): Block(
      (conv1): Conv2D(64, 128, kernel_size=[3, 3], stride=[2, 2], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(128, 128, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Sequential(
        (0): Conv2D(64, 128, kernel_size=[1, 1], stride=[2, 2], data_format=NCHW)
        (1): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      )
    )
    (1): Block(
      (conv1): Conv2D(128, 128, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(128, 128, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=128, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
  )
  (layer3): Sequential(
    (0): Block(
      (conv1): Conv2D(128, 256, kernel_size=[3, 3], stride=[2, 2], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(256, 256, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Sequential(
        (0): Conv2D(128, 256, kernel_size=[1, 1], stride=[2, 2], data_format=NCHW)
        (1): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      )
    )
    (1): Block(
      (conv1): Conv2D(256, 256, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(256, 256, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=256, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
  )
  (layer4): Sequential(
    (0): Block(
      (conv1): Conv2D(256, 512, kernel_size=[3, 3], stride=[2, 2], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(512, 512, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Sequential(
        (0): Conv2D(256, 512, kernel_size=[1, 1], stride=[2, 2], data_format=NCHW)
        (1): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      )
    )
    (1): Block(
      (conv1): Conv2D(512, 512, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn1): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      (conv2): Conv2D(512, 512, kernel_size=[3, 3], padding=1, data_format=NCHW)
      (bn2): BatchNorm2D(num_features=512, momentum=0.9, epsilon=1e-05)
      (relu): ReLU()
      (downsample): Identity()
    )
  )
)

Process finished with exit code 0

代码

import paddle
import paddle.nn as nn


class Identity(nn.Layer):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x


class Block(nn.Layer):
    def __init__(self, in_dim, out_dim, stride):
        super().__init__()
        self.conv1 = nn.Conv2D(in_dim, out_dim, 3, stride, 1, bias_attr=False)
        self.bn1 = nn.BatchNorm2D(out_dim)
        self.conv2 = nn.Conv2D(out_dim, out_dim, 3, 1, 1, bias_attr=False)
        self.bn2 = nn.BatchNorm2D(out_dim)
        self.relu = nn.ReLU()
        if stride == 2 or in_dim != out_dim:
            self.downsample = nn.Sequential(
                *[nn.Conv2D(in_dim, out_dim, 1, stride, bias_attr=False), nn.BatchNorm2D(out_dim)])
        else:
            self.downsample = Identity()

    def forward(self, x):
        h = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        identity = self.downsample(h)
        x = x + identity
        x = self.relu(x)
        return x


class ResNet18(nn.Layer):
    def __init__(self, in_dim=64, num_classes=1000):
        super().__init__()
        self.in_dim = in_dim  # 差点忘了这一行
        #     stem
        self.conv1 = nn.Conv2D(in_channels=3, out_channels=in_dim, kernel_size=3, stride=1, padding=1, bias_attr=False)
        self.bn1 = nn.BatchNorm2D(in_dim)
        self.relu = nn.ReLU()
        #     head
        self.avagPool = nn.AdaptiveAvgPool2D(1)
        self.classifier = nn.Linear(512, num_classes)
        # blocks
        self.layer1 = self.makelayer(64, 2, 1)
        self.layer2 = self.makelayer(128, 2, 2)
        self.layer3 = self.makelayer(256, 2, 2)
        self.layer4 = self.makelayer(512, 2, 2)

    def makelayer(self, out_dim, n_blocks, stride):
        layer_list = []
        layer_list.append(Block(self.in_dim, out_dim, stride))  # 哦对,这里的self.in_dim是这个类的,不是这个函数的.
        self.in_dim = out_dim
        for i in range(1, n_blocks):
            layer_list.append(Block(self.in_dim, out_dim, stride=1))
        return nn.Sequential(*layer_list)

    def forward(self, x):
        x=self.conv1(x)
        x=self.bn1(x)
        x=self.relu(x)

        #blocks
        x=self.layer1(x)
        x=self.layer2(x)
        x=self.layer3(x)
        x=self.layer4(x)

        #head
        x=self.avagPool(x)
        # print("preflatten:",x.shape)
        x=x.flatten(1)
        # print("flatten:",x.shape)
        x=self.classifier(x)
        # print("classifier:",x.shape)
        return x
def main():
    model=ResNet18()
    x=paddle.randn([2,3,32,32])
    out=model(x)
    print(model)
    # print("x.shape:",x.shape)
if __name__ == "__main__":
    main()
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141235.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • C# winform美化窗体

    C# winform美化窗体记录一下winform美化工具CSkin一个.Net的UI库。参考链接:https://blog.csdn.net/yyl7727/article/details/78904125?spm=1001.2014.3001.5502

    2022年5月24日
    38
  • 大疆网上测评题库_大疆笔试题

    大疆网上测评题库_大疆笔试题大疆笔试的体验很好,没有很为难应聘者,还有着自己鲜明的特点,我认为值得一说,特此写笔经记录一下,顺便攒攒RP,第一次笔经就献给大疆啦~笔试网站是大疆自己搭建的(UI设计炒鸡好看!!!),我猜题目也是大疆HR团队自己出的。从这点来看,大疆对人才的把控很严格,必须是自己经手选出来的人。整套笔试题目共有90道题,给了1.5个小时完成,题型包括态度行为题、行业知识题、工作情景题,以及略有升级的行测题。其中…

    2022年6月30日
    524
  • OKhttpClient 简单使用总结「建议收藏」

    http优化,由httpClient改为OKHttpClient,研究了一下,网上资料不多大部分是安卓的,就着httpClient的入参简单写了一个公共方法,因为上一层使用了hystrix,就没有使用异步调用。后期看业务需要增加OKHttp的拦截和其他特性。注意请求timeout报java.io.InterruptedIOException:threadinterrupted异常,希望最新…

    2022年4月16日
    53
  • 树莓派4b OpenWrt做旁路由

    树莓派4b OpenWrt做旁路由主要分为以下几步:一、下载并刷入OpenWrt固件OpenWrt固件用的是Lean大的最新编译好的固件,按照正常的步骤在GitHub上下载并将二、进入路由器后台修改静态IP及相应的防火墙设置三、连接树莓派的wifi,并手动设置IP…

    2022年5月12日
    54
  • 几种IO流读写文件

    几种IO流读写文件一、超类:字节流:InputStream(读入流)OutputStream(写出流)字符流:Reader(字符读入流)Writer(字符写出流)二、文件操作流字节流:FileInputStream,FileOutputStream字符流:FileReader,FileWriter(用法与字节流基本相同,不写)//1.指定要读

    2022年5月18日
    45
  • task scheduler启动不了_Task Scheduler

    task scheduler启动不了_Task Scheduler理解ITaskService对象此对象需要依赖TaskshdWindows服务,如果此服务被关闭,那么此COM对象也将会失效。

    2022年10月9日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号