python中griddata_python – 来自xyz数据的Matplotlib轮廓:griddata无效索引[通俗易懂]

python中griddata_python – 来自xyz数据的Matplotlib轮廓:griddata无效索引[通俗易懂]我正在尝试使用具有以下格式的文件的matplotlib来绘制等高线图:x1y1z1x2y2z2等等我可以用numpy.loadtxt加载它来获取向量.到目前为止,没有麻烦.我读这个是为了学习如何绘图,并且可以通过复制粘贴来重现它,所以我确定我的安装没有错:我知道我必须输入x和y作为矢量,z作为数组输入,这可以用griddata完成.这也是我在这个网站上找到的.文件说:zi=gridda…

大家好,又见面了,我是你们的朋友全栈君。

我正在尝试使用具有以下格式的文件的matplotlib来绘制等高线图:

x1 y1 z1

x2 y2 z2

等等

我可以用numpy.loadtxt加载它来获取向量.到目前为止,没有麻烦.

我读这个是为了学习如何绘图,并且可以通过复制粘贴来重现它,所以我确定我的安装没有错:

我知道我必须输入x和y作为矢量,z作为数组输入,这可以用griddata完成.这也是我在这个网站上找到的.

文件说:

zi = griddata(x,y,z,xi,yi) fits a surface of the form z = f*(*x, y) to the data in the (usually) nonuniformly spaced vectors (x, y, z). griddata() interpolates this surface at the points specified by (xi, yi) to produce zi. xi and yi must describe a regular grid, can be either 1D or 2D, but must be monotonically increasing.

为了这个例子,我写了这段代码:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as ml

x=np.linspace(1.,10.,20)

y=np.linspace(1.,10.,20)

z=np.linspace(1.,2.,20)

xi=np.linspace(1.,10.,10)

yi=np.linspace(1.,10.,10)

zi = ml.griddata(x,y,z,xi,yi)

但是,当涉及到griddata时,我收到以下错误:

IndexError:索引无效

所以,我试着修改一下doc的例子,如下所示:

from matplotlib.mlab import griddata

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(-2.1,2.1,300)

y = np.linspace(-2.1,2.1,300)

z = x*np.exp(-x**2-y**2)

# define grid.

xi = np.linspace(-2.1,2.1,100)

yi = np.linspace(-2.1,2.1,200)

# grid the data.

zi = griddata(x,y,z,xi,yi,interp=’linear’)

我得到了同样的错误.我不明白出了什么问题.

谢谢你的帮助.

解决方法:

考虑:

x = np.linspace(1., 10., 20)

y = np.linspace(1., 10., 20)

z = np.linspace(1., 2., 20)

这意味着我们知道沿x = y线的某些点的z值.

从那里,

zi = ml.griddata(x,y,z,xi,yi)

要求mlab.griddata推断矩形网格中所有点的z值.

我们已经提供了很多关于z如何沿着这条线变化的信息,但没有关于z如何在垂直方向上变化的信息(远离x = y线).由于mlab.griddata拒绝猜测,因此引发了错误.

如果您的初始x,y数据更随机分布,您将获得更好的结果:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as ml

ndata = 10

ny, nx = 100, 200

xmin, xmax = 1, 10

ymin, ymax = 1, 10

# x = np.linspace(1, 10, ndata)

# y = np.linspace(1, 10, ndata)

x = np.random.randint(xmin, xmax, ndata)

y = np.random.randint(ymin, ymax, ndata)

z = np.random.random(ndata)

xi = np.linspace(xmin, xmax, nx)

yi = np.linspace(ymin, ymax, ny)

zi = ml.griddata(x, y, z, xi, yi)

plt.contour(xi, yi, zi, 15, linewidths = 0.5, colors = ‘k’)

plt.pcolormesh(xi, yi, zi, cmap = plt.get_cmap(‘rainbow’))

plt.colorbar()

plt.scatter(x, y, marker = ‘o’, c = ‘b’, s = 5, zorder = 10)

plt.xlim(xmin, xmax)

plt.ylim(ymin, ymax)

plt.show()

如果你想让mlab.griddata以任意方式沿着x = y线将数据外推到整个网格,你可以添加两个额外的边界点(xmin,ymax,z [0])和(xmax,ymin,z [ – 1]):

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as ml

np.random.seed(8)

ndata = 10

ny, nx = 100, 200

xmin, xmax = 1, 10

ymin, ymax = 1, 10

x = np.linspace(1, 10, ndata)

y = np.linspace(1, 10, ndata)

z = np.random.random(ndata)

x = np.r_[x,xmin,xmax]

y = np.r_[y,ymax,ymin]

z = np.r_[z,z[0],z[-1]]

xi = np.linspace(xmin, xmax, nx)

yi = np.linspace(ymin, ymax, ny)

# Requires installation of natgrid

# http://sourceforge.net/projects/matplotlib/files/matplotlib-toolkits/

zi = ml.griddata(x, y, z, xi, yi, interp=’nn’)

# Or, without natgrid:

# zi = ml.griddata(x, y, z, xi, yi, interp=’linear’)

plt.contour(xi, yi, zi, 15, linewidths = 0.5, colors = ‘k’)

plt.pcolormesh(xi, yi, zi, cmap = plt.get_cmap(‘rainbow’))

plt.colorbar()

plt.scatter(x, y, marker = ‘o’, c = ‘b’, s = 10, zorder = 10)

plt.xlim(xmin, xmax)

plt.ylim(ymin, ymax)

plt.show()

标签:python,matplotlib,interpolation

来源: https://codeday.me/bug/20191004/1851562.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141297.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • platform_device与platform_driver

    platform_device与platform_driver

    2021年12月14日
    43
  • 指派问题匈牙利算法例题_匈牙利算法matlab代码

    指派问题匈牙利算法例题_匈牙利算法matlab代码问题描述:在生活中经常遇到这样的问题,某单位需完成n项任务,恰好有n个人可承担这些任务。由于每人的专长不同,各人完成任务不同(或所费时间),效率也不同。于是产生应指派哪个人去完成哪项任务,使完成n项

    2022年8月3日
    7
  • WiFi 2.4G和5G信道分布说明(认证相关)

    WiFi 2.4G和5G信道分布说明(认证相关)FCC36,40,44,48,52,56,60,64,100,104,108,112,116,136,140,149,153,157,161,165IC 36,40,44,48,52,56,60,64,149,153,157,161ETSI 36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,128,132,136,140SPAIN 36,40,44,48,52,56,60,64,100,104,108,112,116,120,124.

    2022年6月3日
    42
  • C语言实现简单贪吃蛇代码

    C语言实现简单贪吃蛇代码基本构成穿墙控制死亡控制初始化蛇(init_snake函数)移动蛇(move_snake函数)打印蛇(print_snake函数)利用for循环检测坐标对应的蛇的位置代码演示#include<stdio.h>#include<windows.h>#include<conio.h>#include<time…

    2022年5月26日
    110
  • java中byte的用法_澄清池的工作原理

    java中byte的用法_澄清池的工作原理缓冲区在计算机世界中随处可见,内存中的多级缓冲区,io设备的缓冲区等等,还有我们经常用的内存队列,分布式队列等等。缓冲区,平衡了数据产生方和数据消费方的处理效率差异,提高了数据处理性能。JDK为了解决网络通信中的数据缓冲问题,提供了ByteBuffer(heap或者直接内存缓存)来解决缓存问题,通过缓冲区来平衡网络io和CPU之间的速度差异,等待缓冲区积累到一定量的数据再统一交给CPU去处理,从而…

    2022年9月19日
    4
  • pytest重试_pytest的conftest

    pytest重试_pytest的conftest安装:pip3installpytest-rerunfailures重新运行所有失败用例要重新运行所有测试失败的用例,请使用–reruns命令行选项,并指定要运行测试的最大次数:$py

    2022年7月30日
    8

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号