python中griddata_python – 来自xyz数据的Matplotlib轮廓:griddata无效索引[通俗易懂]

python中griddata_python – 来自xyz数据的Matplotlib轮廓:griddata无效索引[通俗易懂]我正在尝试使用具有以下格式的文件的matplotlib来绘制等高线图:x1y1z1x2y2z2等等我可以用numpy.loadtxt加载它来获取向量.到目前为止,没有麻烦.我读这个是为了学习如何绘图,并且可以通过复制粘贴来重现它,所以我确定我的安装没有错:我知道我必须输入x和y作为矢量,z作为数组输入,这可以用griddata完成.这也是我在这个网站上找到的.文件说:zi=gridda…

大家好,又见面了,我是你们的朋友全栈君。

我正在尝试使用具有以下格式的文件的matplotlib来绘制等高线图:

x1 y1 z1

x2 y2 z2

等等

我可以用numpy.loadtxt加载它来获取向量.到目前为止,没有麻烦.

我读这个是为了学习如何绘图,并且可以通过复制粘贴来重现它,所以我确定我的安装没有错:

我知道我必须输入x和y作为矢量,z作为数组输入,这可以用griddata完成.这也是我在这个网站上找到的.

文件说:

zi = griddata(x,y,z,xi,yi) fits a surface of the form z = f*(*x, y) to the data in the (usually) nonuniformly spaced vectors (x, y, z). griddata() interpolates this surface at the points specified by (xi, yi) to produce zi. xi and yi must describe a regular grid, can be either 1D or 2D, but must be monotonically increasing.

为了这个例子,我写了这段代码:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as ml

x=np.linspace(1.,10.,20)

y=np.linspace(1.,10.,20)

z=np.linspace(1.,2.,20)

xi=np.linspace(1.,10.,10)

yi=np.linspace(1.,10.,10)

zi = ml.griddata(x,y,z,xi,yi)

但是,当涉及到griddata时,我收到以下错误:

IndexError:索引无效

所以,我试着修改一下doc的例子,如下所示:

from matplotlib.mlab import griddata

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(-2.1,2.1,300)

y = np.linspace(-2.1,2.1,300)

z = x*np.exp(-x**2-y**2)

# define grid.

xi = np.linspace(-2.1,2.1,100)

yi = np.linspace(-2.1,2.1,200)

# grid the data.

zi = griddata(x,y,z,xi,yi,interp=’linear’)

我得到了同样的错误.我不明白出了什么问题.

谢谢你的帮助.

解决方法:

考虑:

x = np.linspace(1., 10., 20)

y = np.linspace(1., 10., 20)

z = np.linspace(1., 2., 20)

这意味着我们知道沿x = y线的某些点的z值.

从那里,

zi = ml.griddata(x,y,z,xi,yi)

要求mlab.griddata推断矩形网格中所有点的z值.

我们已经提供了很多关于z如何沿着这条线变化的信息,但没有关于z如何在垂直方向上变化的信息(远离x = y线).由于mlab.griddata拒绝猜测,因此引发了错误.

如果您的初始x,y数据更随机分布,您将获得更好的结果:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as ml

ndata = 10

ny, nx = 100, 200

xmin, xmax = 1, 10

ymin, ymax = 1, 10

# x = np.linspace(1, 10, ndata)

# y = np.linspace(1, 10, ndata)

x = np.random.randint(xmin, xmax, ndata)

y = np.random.randint(ymin, ymax, ndata)

z = np.random.random(ndata)

xi = np.linspace(xmin, xmax, nx)

yi = np.linspace(ymin, ymax, ny)

zi = ml.griddata(x, y, z, xi, yi)

plt.contour(xi, yi, zi, 15, linewidths = 0.5, colors = ‘k’)

plt.pcolormesh(xi, yi, zi, cmap = plt.get_cmap(‘rainbow’))

plt.colorbar()

plt.scatter(x, y, marker = ‘o’, c = ‘b’, s = 5, zorder = 10)

plt.xlim(xmin, xmax)

plt.ylim(ymin, ymax)

plt.show()

如果你想让mlab.griddata以任意方式沿着x = y线将数据外推到整个网格,你可以添加两个额外的边界点(xmin,ymax,z [0])和(xmax,ymin,z [ – 1]):

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as ml

np.random.seed(8)

ndata = 10

ny, nx = 100, 200

xmin, xmax = 1, 10

ymin, ymax = 1, 10

x = np.linspace(1, 10, ndata)

y = np.linspace(1, 10, ndata)

z = np.random.random(ndata)

x = np.r_[x,xmin,xmax]

y = np.r_[y,ymax,ymin]

z = np.r_[z,z[0],z[-1]]

xi = np.linspace(xmin, xmax, nx)

yi = np.linspace(ymin, ymax, ny)

# Requires installation of natgrid

# http://sourceforge.net/projects/matplotlib/files/matplotlib-toolkits/

zi = ml.griddata(x, y, z, xi, yi, interp=’nn’)

# Or, without natgrid:

# zi = ml.griddata(x, y, z, xi, yi, interp=’linear’)

plt.contour(xi, yi, zi, 15, linewidths = 0.5, colors = ‘k’)

plt.pcolormesh(xi, yi, zi, cmap = plt.get_cmap(‘rainbow’))

plt.colorbar()

plt.scatter(x, y, marker = ‘o’, c = ‘b’, s = 10, zorder = 10)

plt.xlim(xmin, xmax)

plt.ylim(ymin, ymax)

plt.show()

标签:python,matplotlib,interpolation

来源: https://codeday.me/bug/20191004/1851562.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141297.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 如何在vue中安装及使用layui框架[通俗易懂]

    如何在vue中安装及使用layui框架[通俗易懂]首先第一步,我们先安装layui,如下图:第二步,安装完成之后,然后接下来你在你文件夹目录下的(node_modules)中找到(dist文件),如下图:第三步,将dist下的文件直接复制到文件目录的static中,那么你就要在static文件当中见一个layui的文件夹,将他们放在里边,如下图:第四步,你就开始可以引入layui中的代码了,直接看步骤吧,哈哈第五步,看看效果图吧,哈哈哈…

    2022年6月25日
    37
  • python的三种取整方式_python取整函数-取整函数,PYTHON[通俗易懂]

    python的三种取整方式_python取整函数-取整函数,PYTHON[通俗易懂]本教程分享:《python取整函数》,python有什么办法使得int按照”四舍五入”的方式取…由于小数取整会采用比较暴力的截断方式,即向下取整,所以要想使得int()按照“四舍五入”的方式取整,可以采用如下方法:5.4“四舍五入”结果为:5,int(5.4+0.5)==55.6“四舍五入”结果为:6,int(5.6+0.5)==6python为什么算除法自动取整了。如图…

    2025年7月15日
    5
  • 带通滤波器的设计[通俗易懂]

    带通滤波器的设计[通俗易懂]一、滤波器:滤波器按照频带划分可以分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BEF)。其中射频天线领域主要采用带通滤波器(BPF)。二、带通滤波器(BPF):①:RFBPF:从天线中取出期望频带的有效信号,滤除不需要频带的电磁波信号和噪声。②:RFBPF:用下级混频器(降频混频器)进行频率转换时,防止在IF频带中引入干扰信号,用BP…

    2022年5月4日
    75
  • 申请并部署阿里云SSL免费证书详细流程[通俗易懂]

    申请并部署阿里云SSL免费证书详细流程[通俗易懂]1、申请阿里云SSL免费证书,依次如下图操作。注意:此处一直验证失败是因为用了CDN(很多找不到原因的问题都是因为使用了CDN),在百度云加速中再次解析一次即可。2、部署:阿里云服务器可直接部署,其他第三方服务器下载安装。(1)阿里云服务器部署。(2)第三方服务器下载安装,安装方法查看“下载”键左侧的“帮助”,本文中用的是PHPstudy8.0自带的安装方法。注意事项:一、服务器windows防火墙允许443端口;二、云服务器需要单独在控制面板设置允许443端

    2022年10月3日
    3
  • futex验证_fulvic

    futex验证_fulvic1,验证代码转载#include#include#include#include#includesem_tsem_a;void*task1();intmain(void){ intret=0; pthread_tthrd1; sem_init(&sem_a,0,1);  //createchildrenpr

    2022年9月21日
    2
  • memwatch

    memwatch一、简介memwatch可以跟踪程序中的内存泄漏和错误,能检测双重释放(double-free)、错误释放(erroneousfree)、没有释放的内存(unfreedmemory)、溢出(Ov

    2022年7月4日
    37

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号