C语言求最大公约数和最小公倍数(思路清晰+拓展)[通俗易懂]

C语言求最大公约数和最小公倍数(思路清晰+拓展)[通俗易懂]最大公约数的求法首先了解它的一般求法(欧几里得算法):假设存在两个数A和B,假如A%B的结果不为0,那么A和B的最大公约数是B与A%B的最大公约数,一直往下计算,直到后者为0,此时的最大公约数为A’(注意不是A而是A’)。就比如上边的例子,当A%B==0的时候,最大公约数就是B了,这个A’就代表B。最大公约数的代码:(基于C++实现的函数)intgcd(inta,intb){ in…

大家好,又见面了,我是你们的朋友全栈君。

最大公约数的求法

首先了解它的一般求法(欧几里得算法):假设存在两个数A和B,假如A%B的结果不为0,那么A和B的最大公约数是B与A%B的最大公约数,一直往下计算,直到后者为0,此时的最大公约数为A’(注意不是A而是A’)。就比如上边的例子,当A%B==0的时候,最大公约数就是B了,这个A’就代表B。

最大公约数的代码:(基于C++实现的函数)

int gcd(int a,int b)
{
	int g;
	if(b==0)g=a;
	else g=gcd(b,a%b);
	return g;
}

最小公倍数与最大公约数的关系:

假设存在两个数A和B,那他们的最大公倍数就是A和B的积除以的A和B最大公约数即A*B/gcd(A,B)

有了上边求最大公约数的基础,那么我们就可以很轻松的求出两个数的最小公倍数了!不多说,上代码(基于C++语言实现的函数):

int mingbs(int a,int b)
{
	return a*b/gcd(a,b);//gcd函数在上边
}

最大公约数的性质的拓展:

其实求最大公约数是一件很简单的事情,但是它背后的数学性质也很重要;我在这里浅谈一下我曾经应用到的它的性质。

性质1:假如两个数的最大公约数是1,那么这两个数互质。
性质2:假如两个数互质(性质1),那么这两个数组成的最大的不可能的数是他们的积减去他们的和;反之则没有能够组成的最大不可能数,即不可能组成的数是无穷。

由于我没接触到它的别的性质,等我接触到后再补充。
上述两条性质再蓝桥杯的题目《包子凑数问题》中应用比较经典,因为它与动态规划联系起来运用了,有兴趣的读者可以去尝试解决,这样可以提高自己的编程应用能力。《包子凑数问题》请等待我有时间后,再与读者朋友们分享一下我的解题方法。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/145688.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 关于在phpStudy环境下,windows cmd中 php不是内部命令问题

    关于在phpStudy环境下,windows cmd中 php不是内部命令问题

    2021年10月29日
    42
  • 决策树原理及Python代码实现

    决策树原理及Python代码实现决策树其实就是按节点分类数据集的一种方法。在本文中,我将讨论数学上如何使用信息论划分数据集,并编写代码构建决策树。创建决策树进行分类的流程如下:(1)创建数据集(2)计算数据集的信息熵(3)遍历所有特征,选择信息熵最小的特征,即为最好的分类特征(4)根据上一步得到的分类特征分割数据集,并将该特征从列表中移除(5)执行递归函数,返回第三

    2022年9月8日
    0
  • Java吧百度贴吧,年薪60W必备

    Java吧百度贴吧,年薪60W必备思考前面提到Kafka帮我们实现了各个版本的生产者代码,其实他也可以完全不提供这份代码,因为核心的队列的功能已经实现了,这些客户端的代码也可以完全交由用户自己实现。那么假如没有官方代码,我们又该实现一些什么功能,有哪些接口,哪些方法,以及如何组织这些代码呢。带着这样的问题我们一起来思考一下!一般对于这种带有数据流转的设计,我会从由谁产生?什么数据?通往哪去?如何保证通路可靠?这几个方面来考虑。消息自然是通过应用程序构造出来并提供给生产者,生产者首先要知道需要将消息发送到哪个Bro

    2022年7月7日
    34
  • sql学习

    sql学习SQL学习基础SQL是什么?可以做什么?sql的全称是StructuredQueryLanguage,可以访问数据库,对数据进行增删改查,1986年成为ANSI(美国国家标准化组织)的一项标

    2022年7月2日
    23
  • Java开发中BASE64Encoder的使用

    Java开发中BASE64Encoder的使用BASE64Encoder其实是在jkd中的,但是默认不开放,在API中也是找不到的所以先看看怎么将其导入:右击项目–buildpath–>>configurebuildpath–>>双击Accessrules–>>edit–>>add–>>修改为accessible,RulePatte…

    2022年6月24日
    27
  • nginx一个端口配置多个项目_映射地址怎么设置

    nginx一个端口配置多个项目_映射地址怎么设置Nginx默认的80端口如果想要同时配置多个项目,让项目实现不需要指定端口号即可访问,按照如下配置即可更多精彩更多技术博客,请移步IT人才终生实训与职业进阶平台-实训在线前置内容使用Nginx部署Vue项目这片笔记里面介绍了如何使用Nginx部署项目找到对应项目的Nginx配置一般比较规范的配置方式是为每个单独的项目创建.conf文件,如…

    2022年9月4日
    14

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号