数模(6):Leslie矩阵人口模型

数模(6):Leslie矩阵人口模型上期中介绍了两种利用非线性函数拟合人口与物种增长趋势的方法。这两种方法都可以用于对人口与物种增长的总体趋势进行预测,但预测不够精细。我们知道在正常社会条件或自然条件下,生育率与死亡率是与群体的年龄构成息息相关的。我们需要对整个群体按年龄进行层次划分,构建与年龄相联系的人口模型。典型的例子就是Leslie矩阵模型。Leslie矩阵介绍我们把整个社会中的人群按年龄等距分成n组,每组中该年的人口总数…

大家好,又见面了,我是你们的朋友全栈君。

上期中介绍了两种利用非线性函数拟合人口与物种增长趋势的方法。这两种方法都可以用于对人口与物种增长的总体趋势进行预测,但预测不够精细。我们知道在正常社会条件或自然条件下,生育率与死亡率是与群体的年龄构成息息相关的。我们需要对整个群体按年龄进行层次划分,构建与年龄相联系的人口模型。典型的例子就是Leslie矩阵模型。

Leslie矩阵介绍

我们把整个社会中的人群按年龄等距分成n组,每组中该年的人口总数为 a i , i = 1 , 2 , . . . , n a_i,i=1,2,…,n ai,i=1,2,...,n,每组人口的每年的普遍存活率为 c i , i = 1 , 2 , . . . , n − 1 c_i,i=1,2,…,n-1 ci,i=1,2,...,n1(设最后一组下一年全部死亡),每组人口的每年普遍生育率为 b i , i = 1 , 2 , . . . , n b_i,i=1,2,…,n bi,i=1,2,...,n,则下一年每组中的人口总数 a i ′ , i = 1 , 2 , . . . , n a’_i,i=1,2,…,n ai,i=1,2,...,n就满足递推关系式 { a i ′ = a i − 1 c i − 1 , i = 2 , 3 , . . . , n a 1 ′ = ∑ i = 1 n a i b i \begin{cases}a’_i=a_{i-1}c_{i-1},i=2,3,…,n\\a’_1=\sum_{i=1}^{n}a_ib_i\end{cases} {
ai=ai1ci1,i=2,3,...,na1=i=1naibi

该式可写成矩阵乘向量的形式:
a ′ ⃗ = ( b 1 b 2 . . . b n − 1 b n c 1 0 . . . 0 0 0 c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . c n − 1 0 ) ( a 1 , a 2 , . . . , a n ) T \vec{a’}= \left( \begin{matrix} b_1&b_2&…&b_{n-1}&b_n\\ c_1&0&…&0&0\\ 0&c_2&…&0&0\\ \vdots&\vdots&&\vdots\\ 0&0&…&c_{n-1}&0 \end{matrix} \right) (a_1,a_2,…,a_n)^T a
=
b1c100b20c20............bn100cn1bn000(a1,a2,...,an)T

该式中左边的矩阵就是Leslie矩阵。

Leslie矩阵性质

  1. Leslie矩阵有唯一的单重正特征值 λ 1 \lambda_1 λ1,对应的特征向量 x ⃗ 1 = ( 1 , b 1 / λ 1 , c 1 c 2 / λ 1 2 , . . . , c 1 c 2 . . . c n − 1 / λ 1 n − 1 ) T \vec x_1=(1,b_1/\lambda_1,c_1c_2/\lambda_1^2,…,c_1c_2…c_{n-1}/\lambda_1^{n-1})^T x
    1
    =
    (1,b1/λ1,c1c2/λ12,...,c1c2...cn1/λ1n1)T

证明:设n阶的该矩阵为Ln,n阶的特征多项式为Pn,则有
P n = ∣ λ I − L n ∣ = ∣ λ − b 1 − b 2 . . . − b n − 1 − b n − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 1 λ ∣ P_n=|\lambda I-L_n|= \left| \begin{matrix} \lambda-b_1&-b_2&…&-b_{n-1}&-b_n\\ -c_1&\lambda&…&0&0\\ 0&-c_2&…&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&…&-c_{n-1}&\lambda \end{matrix} \right| Pn=λILn=λb1c100b2λc20............bn100cn1bn00λ
= > P n = λ ∣ λ − b 1 − b 2 . . . − b n − 2 − b n − 1 − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 2 λ ∣ + c n − 1 ∣ λ − b 1 − b 2 . . . − b n − 3 − b n − 1 − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 2 0 ∣ =>P_n=\lambda \left| \begin{matrix} \lambda-b_1&-b_2&…&-b_{n-2}&-b_{n-1}\\ -c_1&\lambda&…&0&0\\ 0&-c_2&…&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&…&-c_{n-2}&\lambda \end{matrix} \right|+c_{n-1} \left| \begin{matrix} \lambda-b_1&-b_2&…&-b_{n-3}&-b_{n-1}\\ -c_1&\lambda&…&0&0\\ 0&-c_2&…&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&…&-c_{n-2}&0 \end{matrix} \right| =>Pn=λλb1c100b2λc20............bn200cn2bn100λ+cn1λb1c100b2λc20............bn300cn2bn1000
= > P n = λ P n − 1 + c n − 1 ( − b n − 1 ) ( c 1 c 2 . . . c n − 2 ) ( − 1 ) n − 2 ( − 1 ) n − 2 = > P n = λ P n − 1 − b n − 1 c 1 c 2 . . . c n − 1 =>P_n=\lambda P_{n-1}+c_{n-1}(-b_{n-1})(c_1c_2…c_{n-2})(-1)^{n-2}(-1)^{n-2}=> P_n=\lambda P_{n-1}-b_{n-1}c_1c_2…c_{n-1} =>Pn=λPn1+cn1(bn1)(c1c2...cn2)(1)n2(1)n2=>Pn=λPn1bn1c1c2...cn1
= > P n = λ P n − 1 − β n − 1 = > P n = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > =>P_n=\lambda P_{n-1}-\beta_{n-1}=> P_n=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-…-\beta_n=> =>Pn=λPn1βn1=>Pn=λnβ1λn1β2λn2...βn=>
0 = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > P n = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > 0=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-…-\beta_n=>P_n=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-…-\beta_n=> 0=λnβ1λn1β2λn2...βn=>Pn=λnβ1λn1β2λn2...βn=>
1 = β 1 λ − 1 + β 2 λ − 2 + . . . + β n λ − n 1=\beta_1\lambda^{-1}+\beta_2\lambda^{-2}+…+\beta_n\lambda^{-n} 1=β1λ1+β2λ2+...+βnλn右边的函数是单调连续减函数,且 λ \lambda λ无穷大时趋近0、 λ \lambda λ趋近于0时趋近正无穷,所以有唯一正特征根 λ 1 \lambda_1 λ1,对应的特征向量为 x ⃗ 1 = ( 1 , b 1 / λ 1 , c 1 c 2 / λ 1 2 , . . . , c 1 c 2 . . . c n − 1 / λ 1 n − 1 ) T \vec x_1=(1,b_1/\lambda_1,c_1c_2/\lambda_1^2,…,c_1c_2…c_{n-1}/\lambda_1^{n-1})^T x
1
=
(1,b1/λ1,c1c2/λ12,...,c1c2...cn1/λ1n1)T

  1. 所有负的特征值都满足 ∣ λ ∣ < λ 1 |\lambda|<\lambda_1 λ<λ1,称 λ 1 \lambda_1 λ1严格优势特征值

证明:设有特征值满足 ∣ λ ∣ ≥ λ 1 = > λ ≥ − λ 1 |\lambda|\geq\lambda_1=>\lambda\geq-\lambda_1 λλ1=>λλ1,则有其依然满足 1 = β 1 λ − 1 + β 2 λ − 2 + . . . + β n λ − n 1=\beta_1\lambda^{-1}+\beta_2\lambda^{-2}+…+\beta_n\lambda^{-n} 1=β1λ1+β2λ2+...+βnλn ,而 1 = β 1 λ 1 − 1 + β 2 λ 1 − 2 + . . . + β n λ 1 − n ≥ β ∣ λ − 1 ∣ + β ∣ λ − 2 ∣ + . . . + β ∣ λ − n ∣ > β λ − 1 + β λ − 2 + . . . + β λ − n 1=\beta_1\lambda_1^{-1}+\beta_2\lambda_1^{-2}+…+\beta_n\lambda_1^{-n} \geq\beta|\lambda^{-1}|+\beta|\lambda^{-2}|+…+\beta|\lambda^{-n}|>\beta\lambda^{-1}+\beta\lambda^{-2}+…+\beta\lambda^{-n} 1=β1λ11+β2λ12+...+βnλ1nβλ1+βλ2+...+βλn>βλ1+βλ2+...+βλn,矛盾

  1. 对于任意人口分布向量 x ⃗ \vec x x
    ,其迭代k次后的结果有 lim ⁡ k − > + ∞ x ⃗ ( k ) λ 1 k = c x ⃗ 1 \displaystyle \lim_{k->+∞} \frac{\vec x^{(k)}}{\lambda_1^k}=c\vec x_1 k>+limλ1kx
    (k)
    =
    cx
    1
    (c为常数),即迭代了无穷多次时,人口的分布比例趋近于特征向量 x ⃗ 1 \vec x_1 x
    1
    ,而人口增长率趋近于特征值 λ 1 \lambda_1 λ1

证明:仅对可化为对角阵的情况进行证明(一般情况需要用到约旦标准型)。 lim ⁡ k − > + ∞ x ⃗ ( k ) λ 1 k = lim ⁡ k − > + ∞ L k x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ ( P d i a g ( λ 1 , λ 2 , . . . , λ n ) P − 1 ) k x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ P d i a g ( λ 1 k , λ 2 k , . . . , λ n k ) P − 1 x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ P d i a g ( 1 , λ 2 k / λ 1 k , . . . , λ n k / λ 1 k ) P − 1 x ⃗ ( 0 ) \displaystyle \lim_{k->+∞} \frac{\vec x^{(k)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{L^k\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{(Pdiag(\lambda_1,\lambda_2,…,\lambda_n)P^{-1})^k\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{Pdiag(\lambda_1^k,\lambda_2^k,…,\lambda_n^k)P^{-1}\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} Pdiag(1,\lambda_2^k/\lambda_1^k,…,\lambda_n^k/\lambda_1^k)P^{-1}\vec x^{(0)} k>+limλ1kx
(k)
=
k>+limλ1kLkx
(0)
=
k>+limλ1k(Pdiag(λ1,λ2,...,λn)P1)kx
(0)
=
k>+limλ1kPdiag(λ1k,λ2k,...,λnk)P1x
(0)
=
k>+limPdiag(1,λ2k/λ1k,...,λnk/λ1k)P1x
(0)
,由于 λ 1 \lambda_1 λ1严格优势特征值,有 原 式 = lim ⁡ k − > + ∞ P d i a g ( 1 , 0 , . . . , 0 ) P − 1 x ⃗ ( 0 ) = ( x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n ) d i a g ( 1 , 0 , . . . , 0 ) ( x ⃗ 1 ′ , x ⃗ 2 ′ , . . . , x ⃗ n ′ ) ( a 1 , a 2 , . . . , a n ) T = c x ⃗ 1 原式=\displaystyle \lim_{k->+∞} Pdiag(1,0,…,0)P^{-1}\vec x^{(0)}=(\vec x_1,\vec x_2,…,\vec x_n)diag(1,0,…,0)(\vec x’_1,\vec x’_2,…,\vec x’_n)(a_1,a_2,…,a_n)^T=c\vec x_1 =k>+limPdiag(1,0,...,0)P1x
(0)
=
(x
1
,x
2
,...,x
n
)diag(1,0,...,0)(x
1
,x
2
,...,x
n
)(a1,a2,...,an)T=
cx
1

总结

列出Leslie矩阵,我们即可对人口年龄分布进行迭代。且无论一开始的人口分布向量如何,人口比例在迭代无数次之后总趋近于特征向量 x ⃗ 1 \vec x_1 x
1
。而人口增长率趋近于特征值 λ 1 \lambda_1 λ1,说明特征值 λ 1 \lambda_1 λ1可以用于预测人口增长速度,对于计生有重要意义。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/146422.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 解决libssl.so.1.0.0 => not found以及libcrypto.so.1.0.0 => not found

    解决libssl.so.1.0.0 => not found以及libcrypto.so.1.0.0 => not found现在的apt源中,libssl1.0的版本一般是libssl1.0.2,libcrypto1.0的版本一般是libcrypto1.0.2。但是很多应用要使用libssl.so.1.0.0和libcrypto.so.1.0.0。试过软链接,但是没用。所以只好手动下载它们的安装包了。下载地址:https://packages.debian.org/search?suite=jessie&……

    2022年6月29日
    227
  • 第一个免杀花指令生成器–不简单的免杀工具(图)

    第一个免杀花指令生成器–不简单的免杀工具(图)第一个免杀花指令生成器–不简单的免杀工具(图)陆续将以前发表在杂志的文章放上来~,发表于《黑客X档案》,第几期忘了,呵呵前言相信做过免杀的朋友都知道花指令吧。加花指令是一种不错的文件免杀方法,而网上公布的花指令和花指令添加器因为里边的花指令被公布了,所以免杀效果不好。有点汇编基础的人就写自己的花指令,但写花指令的过程比较烦,所以我萌生了写一个花指令生成器的想法,首

    2022年8月20日
    6
  • ZooKeeper的Paxos算法[通俗易懂]

    ZooKeeper的Paxos算法[通俗易懂] PaxosPaxos 这个算法是LeslieLamport在1990年提出的一种基于消息传递的一致性算法Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。 part-timeparliament PaxosMadeSimple里这样描述Paxos算法执行过程: prepare阶段: proposer【申请人】选择一个提案编号n并将prepa…

    2025年7月1日
    3
  • Ubuntu中Anaconda安装opencv3[通俗易懂]

    Ubuntu中Anaconda安装opencv3[通俗易懂]关于如何安装,这篇blog中已经给出了很好的方法:https://blog.csdn.net/isuccess88/article/details/73546835,但由于自前段时间开始换源已经不能解决anaconda的下载速度,因此即使使用此方法也很难进行下去,下载速度太慢了。我特地下载了opencv3的opencv3-3.2.0-py35(链接:https://pan.baidu.com…

    2022年10月19日
    1
  • 国内公共DNS_网速快的DNS

    国内公共DNS_网速快的DNS中国互联网络中心(推荐,安全又快速):1.2.4.8、210.2.4.8、101.226.4.6(电信及移动)、123.125.81.6(联通)阿里DNS:223.5.5.5、223.6.6.6googleDNS(不推荐,容易掉包,还很慢):8.8.8.8、8.8.4.4openDNS:208.67.222.222208.67.220.220208.67.222.220208.67….

    2025年9月24日
    6
  • 中英文字典树_字典树详解

    中英文字典树_字典树详解英文字典树英文字典树的结构图是这样的。按照树型结构存储字符串,每个结点存一个字符,自顶向下做标记的就是词的词尾,比如,app,apple,application,abstract,absorb,block,black,blake…等等介绍一下英文字典树的结点数据结构:1.词频int型变量记录词频2.结点型数组,长度26下标对应0-25(也…

    2025年9月24日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号