Spark Streaming Join「建议收藏」

Spark Streaming Join「建议收藏」多数据源Join思路多数据源Join大致有以下三种思路:数据源端Join,如Android/IOS客户端在上报用户行为数据时就获取并带上用户基础信息。计算引擎上Join,如用SparkStreaming、Flink做Join。结果端Join,如用HBase/ES做Join,Join键做Rowkey/_id,各字段分别写入列簇、列或field。三种思路各有优劣,使用时注意…

大家好,又见面了,我是你们的朋友全栈君。

多数据源Join思路

多数据源Join大致有以下三种思路:

  • 数据源端Join,如Android/IOS客户端在上报用户行为数据时就获取并带上用户基础信息。

  • 计算引擎上Join,如用Spark Streaming、Flink做Join。

  • 结果端Join,如用HBase/ES做Join,Join键做Rowkey/_id,各字段分别写入列簇、列或field。

三种思路各有优劣,使用时注意一下。这里总结在计算引擎Spark Streaming上做Join。

Stream-Static Join

流与完全静态数据Join

流与完全静态数据Join。有两种方式,一种是RDD Join方式,另一种是Broadcast Join(也叫Map-Side Join)方式。

RDD Join 方式

思路:RDD Join RDD 。

package com.bigData.spark

import com.alibaba.fastjson.{ 
   JSON, JSONException, JSONObject}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.{ 
   Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.{ 
   ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{ 
   Durations, StreamingContext}

/** * Author: Wang Pei * License: Copyright(c) Pei.Wang * Summary: * * Stream-Static Join * * spark 2.2.2 * */
case class UserInfo(userID:String,userName:String,userAddress:String)
object StreamStaicJoin { 
   
  def main(args: Array[String]): Unit = { 
   

    //设置日志等级
    Logger.getLogger("org").setLevel(Level.WARN)

    //Kafka 参数
    val kafkaParams= Map[String, Object](
      "bootstrap.servers" -> "localhost:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (true: java.lang.Boolean),
      "group.id" -> "testTopic3_consumer_v1")

    //spark环境
    val sparkConf = new SparkConf().setAppName(this.getClass.getSimpleName.replace("$","")).setMaster("local[3]")
    val ssc = new StreamingContext(sparkConf,Durations.seconds(10))

    /** 1) 静态数据: 用户基础信息*/
    val userInfo=ssc.sparkContext.parallelize(Array(
      UserInfo("user_1","name_1","address_1"),
      UserInfo("user_2","name_2","address_2"),
      UserInfo("user_3","name_3","address_3"),
      UserInfo("user_4","name_4","address_4"),
      UserInfo("user_5","name_5","address_5")
    )).map(item=>(item.userID,item))


    /** 2) 流式数据: 用户发的tweet数据*/
    /** 数据示例: * eventTime:事件时间、retweetCount:转推数、language:语言、userID:用户ID、favoriteCount:点赞数、id:事件ID * {"eventTime": "2018-11-05 10:04:00", "retweetCount": 1, "language": "chinese", "userID": "user_1", "favoriteCount": 1, "id": 4909846540155641457} */

    val kafkaDStream=KafkaUtils.createDirectStream[String,String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String,String](Set("testTopic3"),kafkaParams)
    ).map(item=>parseJson(item.value())).map(item=>{ 
   
      val userID = item.getString("userID")
      val eventTime = item.getString("eventTime")
      val language= item.getString("language")
      val favoriteCount = item.getInteger("favoriteCount")
      val retweetCount = item.getInteger("retweetCount")
      (userID,(userID,eventTime,language,favoriteCount,retweetCount))
    })


    /** 3) 流与静态数据做Join (RDD Join 方式)*/
    kafkaDStream.foreachRDD(_.join(userInfo).foreach(println))

    ssc.start()
    ssc.awaitTermination()

  }

  /**json解析*/
  def parseJson(log:String):JSONObject={ 
   
    var ret:JSONObject=null
    try{ 
   
      ret=JSON.parseObject(log)
    }catch { 
   
      //异常json数据处理
      case e:JSONException => println(log)
    }
    ret
  }

}

stream_static_rdd_join.png

Broadcast Join 方式

思路:RDD遍历每一条数据,去匹配广播变量中的值。

package com.bigData.spark

import com.alibaba.fastjson.{ 
   JSON, JSONException, JSONObject}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.{ 
   Level, Logger}
import org.apache.spark.{ 
   SparkConf, SparkContext}
import org.apache.spark.streaming.kafka010.{ 
   ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{ 
   Durations, StreamingContext}

/** * Author: Wang Pei * License: Copyright(c) Pei.Wang * Summary: * * Stream-Static Join * * spark 2.2.2 * */
case class UserInfo(userID:String,userName:String,userAddress:String)
object StreamStaticJoin2 { 
   
  def main(args: Array[String]): Unit = { 
   

    //设置日志等级
    Logger.getLogger("org").setLevel(Level.WARN)

    //Kafka 参数
    val kafkaParams= Map[String, Object](
      "bootstrap.servers" -> "localhost:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (true: java.lang.Boolean),
      "group.id" -> "testTopic3_consumer_v1")

    //spark环境
    val sparkConf = new SparkConf().setAppName(this.getClass.getSimpleName.replace("$","")).setMaster("local[3]")
    val ssc = new StreamingContext(sparkConf,Durations.seconds(10))

    /** 1) 静态数据: 用户基础信息。 将用户基础信息广播出去。*/
    val broadcastUserInfo=ssc.sparkContext.broadcast(
      Map(
        "user_1"->UserInfo("user_1","name_1","address_1"),
        "user_2"->UserInfo("user_2","name_2","address_2"),
        "user_3"->UserInfo("user_3","name_3","address_3"),
        "user_4"->UserInfo("user_4","name_4","address_4"),
        "user_5"->UserInfo("user_5","name_5","address_5")
      ))


    /** 2) 流式数据: 用户发的tweet数据*/
    /** 数据示例: * eventTime:事件时间、retweetCount:转推数、language:语言、userID:用户ID、favoriteCount:点赞数、id:事件ID * {"eventTime": "2018-11-05 10:04:00", "retweetCount": 1, "language": "chinese", "userID": "user_1", "favoriteCount": 1, "id": 4909846540155641457} */
    val kafkaDStream=KafkaUtils.createDirectStream[String,String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String,String](List("testTopic3"),kafkaParams)
    ).map(item=>parseJson(item.value())).map(item=>{ 
   
      val userID = item.getString("userID")
      val eventTime = item.getString("eventTime")
      val language= item.getString("language")
      val favoriteCount = item.getInteger("favoriteCount")
      val retweetCount = item.getInteger("retweetCount")
      (userID,(userID,eventTime,language,favoriteCount,retweetCount))
    })


    /** 3) 流与静态数据做Join (Broadcast Join 方式)*/
    val result=kafkaDStream.mapPartitions(part=>{ 
   
      val userInfo = broadcastUserInfo.value
      part.map(item=>{ 
   
        (item._1,(item._2,userInfo.getOrElse(item._1,null)))})
    })

    result.foreachRDD(_.foreach(println))


    ssc.start()
    ssc.awaitTermination()

  }

  /**json解析*/
  def parseJson(log:String):JSONObject={ 
   
    var ret:JSONObject=null
    try{ 
   
      ret=JSON.parseObject(log)
    }catch { 
   
      //异常json数据处理
      case e:JSONException => println(log)
    }
    ret
  }

}

stream_static_rdd_join2.png

流与半静态数据Join

半静态数据指的是放在Redis等的数据,会被更新。

思路:RDD 每个Partition连接一次Redis,遍历Partition中每条数据,根据k,去Redis中查找v。

package com.bigData.spark

import com.alibaba.fastjson.{ 
   JSON, JSONException, JSONObject}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.{ 
   Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.{ 
   ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{ 
   Durations, StreamingContext}
import redis.clients.jedis.Jedis

/** * Author: Wang Pei * License: Copyright(c) Pei.Wang * Summary: * * Stream-Static Join * * spark 2.2.2 * */
object StreamStaicJoin3 { 
   
  def main(args: Array[String]): Unit = { 
   

    //设置日志等级
    Logger.getLogger("org").setLevel(Level.WARN)

    //Kafka 参数
    val kafkaParams= Map[String, Object](
      "bootstrap.servers" -> "localhost:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (true: java.lang.Boolean),
      "group.id" -> "testTopic3_consumer_v1")

    //spark环境
    val sparkConf = new SparkConf().setAppName(this.getClass.getSimpleName.replace("$","")).setMaster("local[3]")
    val ssc = new StreamingContext(sparkConf,Durations.seconds(10))

    /** 1) 半静态数据: 用户基础信息,在Redis中*/
    /** HMSET user_1 userID "user_1" name "name_1" address "address_1" */
    /** HMSET user_2 userID "user_2" name "name_2" address "address_2" */


    /** 2) 流式数据: 用户发的tweet数据*/
    /** 数据示例: * eventTime:事件时间、retweetCount:转推数、language:语言、userID:用户ID、favoriteCount:点赞数、id:事件ID * {"eventTime": "2018-11-05 10:04:00", "retweetCount": 1, "language": "chinese", "userID": "user_1", "favoriteCount": 1, "id": 4909846540155641457} */

    val kafkaDStream=KafkaUtils.createDirectStream[String,String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String,String](Set("testTopic3"),kafkaParams)
    ).map(item=>parseJson(item.value())).map(item=>{ 
   
      val userID = item.getString("userID")
      val eventTime = item.getString("eventTime")
      val language= item.getString("language")
      val favoriteCount = item.getInteger("favoriteCount")
      val retweetCount = item.getInteger("retweetCount")
      (userID,(userID,eventTime,language,favoriteCount,retweetCount))
    })

    /** 3) 流与半静态数据做Join (RDD Join 方式)*/
    val result=kafkaDStream.mapPartitions(part=>{ 
   
      val redisCli=connToRedis("localhost",6379,3000,10)
      part.map(item=>{ 
   
        (item._1,(item._2,redisCli.hmget(item._1,"userID","name","address")))
      })
    })

    result.foreachRDD(_.foreach(println))


    ssc.start()
    ssc.awaitTermination()

  }

  /**json解析*/
  def parseJson(log:String):JSONObject={ 
   
    var ret:JSONObject=null
    try{ 
   
      ret=JSON.parseObject(log)
    }catch { 
   
      //异常json数据处理
      case e:JSONException => println(log)
    }
    ret
  }

  /**连接到redis*/
  def connToRedis(redisHost:String,redisPort:Int,timeout:Int,dbNum:Int): Jedis ={ 
   
    val redisCli=new Jedis(redisHost,redisPort,timeout)
    redisCli.connect()
    redisCli.select(dbNum)
    redisCli
  }

}

stream_static_join3.png

Stream-Stream Join

流与流Join。

思路:DStream Join DStream。

package com.bigData.spark

import com.alibaba.fastjson.{ 
   JSON, JSONException, JSONObject}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.{ 
   Level, Logger}
import org.apache.spark.{ 
   SparkConf, SparkContext}
import org.apache.spark.streaming.kafka010.{ 
   ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{ 
   Durations, StreamingContext}

/** * Author: Wang Pei * License: Copyright(c) Pei.Wang * Summary: * * Stream-Stream Join * * spark 2.2.2 * */
object StreamStreamJoin { 
   
  def main(args: Array[String]): Unit = { 
   

    //设置日志等级
    Logger.getLogger("org").setLevel(Level.WARN)

    //Kafka 参数
    val kafkaParams1= Map[String, Object](
      "bootstrap.servers" -> "localhost:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (true: java.lang.Boolean),
      "group.id" -> "testTopic3_consumer_v1")

    val kafkaParams2= Map[String, Object](
      "bootstrap.servers" -> "localhost:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (true: java.lang.Boolean),
      "group.id" -> "testTopic4_consumer_v1")


    //spark环境
    val sparkConf = new SparkConf().setAppName(this.getClass.getSimpleName.replace("$","")).setMaster("local[3]")
    val ssc = new StreamingContext(sparkConf,Durations.seconds(10))

    /** 1) 流式数据: 用户发的tweet数据*/
    /** 数据示例: * eventTime:事件时间、retweetCount:转推数、language:语言、userID:用户ID、favoriteCount:点赞数、id:事件ID * {"eventTime": "2018-11-05 10:04:00", "retweetCount": 1, "language": "chinese", "userID": "user_1", "favoriteCount": 1, "id": 4909846540155641457} */

    val kafkaDStream1=KafkaUtils.createDirectStream[String,String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String,String](List("testTopic3"),kafkaParams1)
    ).map(item=>parseJson(item.value())).map(item=>{ 
   
      val userID = item.getString("userID")
      val eventTime = item.getString("eventTime")
      val language= item.getString("language")
      val favoriteCount = item.getInteger("favoriteCount")
      val retweetCount = item.getInteger("retweetCount")
      (userID,(userID,eventTime,language,favoriteCount,retweetCount))
    })

    /** 2) 流式数据: 用户发的tweet数据*/
    /** 数据示例: * eventTime:事件时间、retweetCount:转推数、language:语言、userID:用户ID、favoriteCount:点赞数、id:事件ID * {"eventTime": "2018-11-05 10:04:00", "retweetCount": 1, "language": "chinese", "userID": "user_1", "favoriteCount": 1, "id": 4909846540155641457} */

    val kafkaDStream2=KafkaUtils.createDirectStream[String,String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String,String](List("testTopic4"),kafkaParams2)
    ).map(item=>parseJson(item.value())).map(item=>{ 
   
      val userID = item.getString("userID")
      val eventTime = item.getString("eventTime")
      val language= item.getString("language")
      val favoriteCount = item.getInteger("favoriteCount")
      val retweetCount = item.getInteger("retweetCount")
      (userID,(userID,eventTime,language,favoriteCount,retweetCount))
    })

    /** 3) Stream-Stream Join*/
    val joinedDStream = kafkaDStream1.leftOuterJoin(kafkaDStream2)

    joinedDStream.foreachRDD(_.foreach(println))

    ssc.start()
    ssc.awaitTermination()

  }

  /**json解析*/
  def parseJson(log:String):JSONObject={ 
   
    var ret:JSONObject=null
    try{ 
   
      ret=JSON.parseObject(log)
    }catch { 
   
      //异常json数据处理
      case e:JSONException => println(log)
    }
    ret
  }

}

stream_stream_join.png

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/147402.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 单片机入门级视频教程「建议收藏」

    单片机入门级视频教程「建议收藏」对于入门级网友,向大家推荐郭天祥的《十天学会单片机c语言》,简单明了。想亲自做试验,不妨花点钱买他的实验板教程从电驴资源网就能下载

    2022年5月22日
    46
  • 汇微商app v4.0.1官方iPhone版

    汇微商app v4.0.1官方iPhone版微信加粉完全免费,分行业类别,精确加粉,自动匹配筛选,拒绝僵尸粉,让你彻底解决烦恼。

    2022年5月16日
    44
  • spring cloud总览和架构图[通俗易懂]

    spring cloud总览和架构图[通俗易懂]本节主要是根据微服务的技术架构图,介绍下springcloud微服务体系中的核心组件。下面是spring官网的springcloud微服务架构图:核心组件说明:分享2张微服务的架构图:之后的文章中,会针对各组件和底层原理调优,以及工作中遇到的一些坑,进行一些记录和说明。1、各组件的原理和使用2、服务划分和数据库拆分思路3、微服务的部署方案4、微服务中的一些优化…

    2022年6月5日
    71
  • ubuntu安装goland_ubuntu安装kali工具集

    ubuntu安装goland_ubuntu安装kali工具集1下载地址可以从go语言中文网下载最新的Linux包,地址如下:https://studygolang.com/dl/golang/go1.17.3.linux-amd64.tar.gzhttps://studygolang.com/dl/golang/go1.17.3.linux-amd64.tar.gz2安装进入home目录,使用wget下载子并解压,修改名字,然后创建链接(这个目的是方便后续切换golang版本的时候,只需要修改链接即可),脚本如下:cd~wgethttps

    2022年10月10日
    3
  • 面试官问你离职原因,你答对了么?

    面试官问你离职原因,你答对了么?

    2022年2月12日
    54
  • jwt三个组成部分_jwt加密算法

    jwt三个组成部分_jwt加密算法JWT在用户注册或登录后,我们想记录用户的登录状态,或者为用户创建身份认证的凭证。我们不再使用Session认证机制,而使用JsonWebToken认证机制。什么是JWTJsonwebtoken(JWT),是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC7519).该token被设计为紧凑且安全的,特别适用于分布式站点的单点登录(SSO)场景。JWT的…

    2022年10月17日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号