目标检测—利用labelimg制作自己的深度学习目标检测数据集

目标检测—利用labelimg制作自己的深度学习目标检测数据集看了网上的xml转txt的博客很多上来就给代码,关于怎么用都不说,有的也用不了,所以这里自己写了一份代码

大家好,又见面了,我是你们的朋友全栈君。

目录

1  labelimg介绍

2  labelimg的安装

3  使用labelimg

3.1 数据准备

3.2  标注前的一些设置

3.3 开始标注


1  labelimg介绍

  Labelimg是一款开源的数据标注工具,可以标注三种格式。

       1  VOC标签格式,保存为xml文件。

       2  yolo标签格式,保存为txt文件。

       3 createML标签格式,保存为json格式。

2  labelimg的安装

       这里主要讲的是在window系统中的安装,首先打开cmd命令行(快捷键:win+R)。进入cmd命令行控制台。输入如下的命令:

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

       运行如上命令后,系统就会自动下载labelimg相关的依赖。由于这是一个很轻量的工具,所以下载起来很快,当出现如下红色框框中的告诉我们成功安装的时候,说明labelimg安装成功了。

目标检测---利用labelimg制作自己的深度学习目标检测数据集

目标检测---利用labelimg制作自己的深度学习目标检测数据集

3  使用labelimg

3.1 数据准备

        首先这里需要准备我们需要打标注的数据集。这里我建议新建一个名为VOC2007的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为JPEGImages的文件夹存放我们需要打标签的图片文件;再创建一个名为Annotations存放标注的标签文件;最后创建一个名为 predefined_classes.txt 的txt文件来存放所要标注的类别名称。

VOC2007的目录结构为:

├── VOC2007
│├── JPEGImages  存放需要打标签的图片文件
│├── Annotations  存放标注的标签文件
│├── predefined_classes.txt  定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别

3.2  标注前的一些设置

         首先在JPEGImages这个文件夹放置待标注的图片,这里是三类图片,分别是人、狗和猫。目标检测---利用labelimg制作自己的深度学习目标检测数据集

        然后再 predefined_classes.txt 这个txt文档里面输入定义的类别种类;如下图所示。

目标检测---利用labelimg制作自己的深度学习目标检测数据集

         打开cmd命令终端(快捷键:win+R)。进入到刚刚创建的这个VOC2007路径(这个很重要,涉及到能不能利用predefined_classes.txt 这个txt文件中定义的类别,我在这里卡了很久,一度以为不能显示txt文件中定义的类别是我安装有问题)。执行如图中的命令进入到VOC2007路径下(每个人的路径都不一样,按个人的路径去写)如下图所示:可以看到进入到相应的目录了。

 目标检测---利用labelimg制作自己的深度学习目标检测数据集

         输入如下的命令打开labelimg。这个命令的意思是打开labelimg工具;打开JPEGImage文件夹,初始化predefined_classes.txt里面定义的类。

labelimg JPEGImages predefined_classes.txt

          运行如上的命令就会打开这个工具;如下。 

目标检测---利用labelimg制作自己的深度学习目标检测数据集

        下面介绍图中的我们常用的按钮。         

 目标检测---利用labelimg制作自己的深度学习目标检测数据集待标注图片数据的路径文件夹,这里输入命令的时候就选定了JPEGImages。(当然这是可以换的)

目标检测---利用labelimg制作自己的深度学习目标检测数据集保存类别标签的路径文件夹,这里我们选定了Annotations文件夹。

目标检测---利用labelimg制作自己的深度学习目标检测数据集这个按键可以说明我们标注的标签为voc格式,点击可以换成yolo或者createML格式。

        点击View,会出现如图红色框框中的选项。最好和我一样把勾勾勾上。

        Auto Save mode:切换到下一张图的时候,会自动保存标签。

        Display Labels:会显示标注框和标签

        Advanced Mode:标注的十字架会一直悬浮在窗口。

目标检测---利用labelimg制作自己的深度学习目标检测数据集

 常用快捷键如下:

A:切换到上一张图片

D:切换到下一张图片

W:调出标注十字架

del :删除标注框框

Ctrl+u:选择标注的图片文件夹

Ctrl+r:选择标注好的label标签存在的文件夹

 3.3 开始标注

        由于我们设置标注的十字架一直在标注界面上,这就不需要我们按快捷键w,然后选定我们需要标注的对象。按住鼠标左键拖出框框就可以了。如下图所示,当我们选定目标以后,就会加载出来predefined_classes.txt  定义自己要标注的所有类别(如果类别多,是真的很方便,就不需要自己手打每个类别的名字了)。打好的标签框框上会有该框框的类别(图中由于颜色的原因不太清晰,仔细看会发现的)。然后界面最右边会出现打好的类别标签。打好一张照片以后,快捷键D,就会进入下一张,这时候就会自动保存标签文件(voc格式会保存xml,yolo会保存txt格式)。

目标检测---利用labelimg制作自己的深度学习目标检测数据集

         标签打完以后可以去Annotations 文件下看到标签文件已经保存在这个目录下。

目标检测---利用labelimg制作自己的深度学习目标检测数据集

 自此labelimg使用讲解就结束了。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/147722.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 回溯法解决01背包问题算法_01背包问题伪代码

    回溯法解决01背包问题算法_01背包问题伪代码0-1背包问题,在搜索过程中使用递归来完成。packagecom.test;classPack{intn=8;//物品个数intW=110;//背包总容量int[]Weights={1,11,21,23,33,43,45,55};//重量数组int[]Values={11,21,31,33,43,53,55,65};//价值数组intbestValu…

    2022年10月9日
    0
  • 孟小峰:大数据管理与数据思维

    孟小峰:大数据管理与数据思维孟小峰:大数据管理与数据思维大数据的规模效应给数据存储、管理以及数据分析带来了极大的挑战,数据管理方式上的变革正在酝酿和发生。本文对大数据的基本概念进行剖析,归纳大数据时代所面临的新挑战,并对大数据的主要应用做简单对比。在此基础上,阐述大数据处理的基本框架,并就云计算技术对于大数据时代数据管理所产生的作用进阅读全文和小伙伴们一起来吐槽

    2022年6月7日
    47
  • 如何在linux系统中设置静态ip地址

    如何在linux系统中设置静态ip地址

    2021年9月16日
    46
  • Android之androidmainfest.xml配置文件详解

    Android之androidmainfest.xml配置文件详解

    2021年6月18日
    109
  • 金蝶erp管理系统下载_erp 金蝶

    金蝶erp管理系统下载_erp 金蝶源码说明:超强的工作流系统,强大的可视化工作流编辑器,灵活自定义表单设计,充分实现企业基于工作流的各项业务管理,与其他模块数据(如HRM等)完美结合。全面综合的任务系统,实现基于信息录入、单据管理、业务协作、工作流转、任务提醒、统计分析等的智能管理。所有单据均支持上传附件功能;且报价单、销售合同、采购订单、发货出库、入库单、派工单等所有模板均支持自定义编辑打印。集成功能实用的CRM系统、进…

    2022年9月16日
    1
  • 张耀阳[通俗易懂]

    张耀阳[通俗易懂]2006.9.17 18:39500)this.style.width=500;”> 张耀阳——杀出个恶名  在他演过的五十几部电影中,有四十多部他扮演了古惑仔,仅在[古惑仔]系列中,张耀阳就“死去活来,阴魂不散”。“乌鸦”丧命后,他又借尸还魂摇身变做“东兴耀阳”,演反派演的把自己名字也搭进去,这真是连他本人都始料未及的

    2022年9月14日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号