完全背包问题(详细解答)

完全背包问题(详细解答)首先完全背包问题需要01背包问题做铺垫,如果读者01背包问题没有解决,一定要理解之后,在看完全背包问题,包括01背包的优化!这里是01背包这里是01背包的全部优化好,我们开始完全背包!完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是v[i],价值是val[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。从定义中可以看出,与01背包的区别01背包最多只能拿一件物品,完全背包则不然,只要空间够多,一种物品我可以拿n件!01

大家好,又见面了,我是你们的朋友全栈君。

首先完全背包问题需要01背包问题做铺垫,如果读者01背包问题没有解决,一定要理解之后,在看完全背包问题,包括01背包的优化!
这里是01背包
这里是01背包的全部优化

好,我们开始完全背包!

完全背包定义

有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是v[i],价值是val[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

从定义中可以看出,与01背包的区别01背包最多只能拿一件物品,完全背包则不然,只要空间够多,一种物品我可以拿n件!

01背包的状态转移方程为:dp(i,j)=max(dp(i-1,j),dp(i-1,j-v[i])+val[i])
完全背包的状态转移方程:dp(i,j)=max(dp(i-1,j),dp(i,j-v)+val[i])

我们可以看出,完全背包的动态转移方程max中第二项为i,而不是i-1。

为什么呢?

我们用01背包的思想去推导,完全背包的动态转移方程

完全背包状态转移方程推导

首先完全背包问题的动态转移方程可写为
(w为val[i]简写)(v=v[i]简写)

dp(i,j)=max(dp(i-1,j) , dp(i-1,j-v)+w , dp(i-1,j-2v)+2w , dp(i-1,j-3v)+3w,
~~(以此类推到k) ,dp(i-1,j-k*v+kw))

我简单解释一下上面的方程,其实就是利用01背包思想,要求无限个物品,实际上我最多能装V/v[i]个 (总体积除以的单个个体积),所以我从装0个,到装一个,2个,3个,k个这里面一定有其中一个,是能产生最大的价值!

然后我们利用上述公式推导出”完全背包的状态转移方程”

开始推导
(时刻注意与这个方程的联系)

dp(i,j)=max(dp(i-1,j) , dp(i-1,j-v)+w , dp(i-1,j-2v)+2w , dp(i-1,j-3v)+3w,
~~(以此类推到k) ,dp(i-1,j-k*v+kw))

推导开始

还是利用01背包思想
dp(i,j-v)=max( dp(i-1,j-v) , dp(i-1,j-2v)+w,dp(i-1,j-3v)+2w , dp(i-1,j-4v)+3w,~~
~依次类推到k , dp(i-1,j-kv)+(k-1)w) )

我们在这个方程两侧同时加上w,即可得到

dp(i,j-v)+w=max( dp(i-1,j-v)+w , dp(i-1,j-2v)+2w,dp(i-1,j-3v)+3w , dp(i-1,j-4v)+4w,~~dp(i-1,j-kv)+kw)

我们在回顾一下这个方程

dp(i,j)=max(dp(i-1,j) , dp(i-1,j-v)+w , dp(i-1,j-2v)+2w , dp(i-1,j-3v)+3w,
~~(以此类推到k) dp(i-1,j-k*v)+kw))

可以发现dp(i,j-v)+w可以替代

dp(i-1,j-v)+w , dp(i-1,j-2v)+2w , dp(i-1,j-3v)+3w,~~, dp(i-1,j-k*v)+kw

所以我们得出
完全背包的状态转移方程:dp(i,j)=max(dp(i-1,j),dp(i,j-v)+w)

好了我们推导完成。
然后我们看下代码:

#include <iostream>
using namespace std;

int N,V;
int v[1010],val[1010];
int dp[1010][1010];
int main()
{ 
   
    scanf("%d%d",&N,&V);
    for(int i=1; i<=N; i++)
    { 
   
        scanf("%d%d",&v[i],&val[i]);
    }
    for(int i=1; i<=N; i++)
        for(int j=0; j<=V; j++)
        { 
   
            dp[i][j]=dp[i-1][j];//继承上一个背包
            if(j>=v[i])
            { 
     //完全背包状态转移方程
                dp[i][j]=max(dp[i-1][j],dp[i][j-v[i]]+val[i]);
            }
        }
    printf("%d",dp[N][V]);
    return 0;
}

从宏观上理解,为什么会这样呢?
在这里插入图片描述

我从代码的角度阐释一下这个问题!
注意我们现在并没有对dp数组进行降维!
我们的j是从0开始的,依次递增这个是完全背包的关键,也是与01背包本质的区别
dp[i][j]=max(dp[i-1][j],dp[i][j-v[i]]+val[i]);
首先要满足完全背包的动态转移方程,就要先知道dp(i,j-v)的大小
正好我们是从0开始的,并不是从后往前,也就是当求到dp(i,j)时
dp(i,j-v),在前面已经求过!!!
所以我们可以应当理顺的求出dp(i,j)而不再是向01背包要考虑前i-1时候的状态!

完全背包的优化

然后我们根据01背包的优化原则对,完全背包进行优化!
优化后的动态方程
dp[j]=max(dp[j],dp[j-v]+w)

代码(里面有一个点需要理解,我写在注释里了)

#include <iostream>
using namespace std;

int N,V;
int v[1010],val[1010];
int dp[1010];
int main()
{ 
   
    scanf("%d%d",&N,&V);
    for(int i=1; i<=N; i++)
    { 
   
        scanf("%d%d",&v[i],&val[i]);
    }
    for(int i=1; i<=N; i++)
        for(int j=0; j<=V; j++)
        { 
   
            dp[j]=dp[j];//此时右边的dp[j]是上一层i-1的dp[j],然后赋值给了当前i的dp[i]
            if(j>=v[i])
            { 
   
                dp[j]=max(dp[j],dp[j-v[i]]+val[i]);//dp[j-v[i]],已经被算过
            }           
        }
    printf("%d",dp[V]);//输出最大体积,即最优解

    return 0;
}

感谢观看,希望大家多多支持一键三连!!
嘻嘻~~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/147830.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • uml点餐系统活动图_UML 活动图

    uml点餐系统活动图_UML 活动图•活动图概述活动图概述•活动图和交互图是UML中对系统动态方面建模的两种主要形式•交互图强调的是对象到对象的控制流,而活动图则强调的是从活动到活动的控制流•活动图是一种表述过程基理、业务过程以及工作流的技术。它可以用来对业务过程、工作流建模,也可以对用例实现甚至是程序实现来建模•UML2.0而言,去除了“活动图是状态图的一种特例”这一规定•如何阅读活动图阅读简单活动图活动图的主要元素•初始节点和…

    2022年6月10日
    40
  • Java开发手册之二方库依赖

    Java开发手册之二方库依赖Java开发手册之二方库依赖

    2022年4月23日
    55
  • java前端好学还是后端好学,一篇文章帮你解答

    java前端好学还是后端好学,一篇文章帮你解答蚂蚁金服一面:下午杭州的电话,问有没有空,果断有空,虽然感觉略显紧张,有点懵逼。面试的题目:HashMap和Hashtable的区别实现一个保证迭代顺序的HashMap说一说排序算法,稳定性,复杂度说一说GC可以保证的实习时长职业规划整体来说,一面的基础性问题比较多,所以博主基本都答出来了,准备过还是有些用处的。所以一面完了感觉还不错,接着第二天下午就二面了。蚂蚁金服二面二面是我最慌的面试,因为二面是最关键的,是最大的主管面试,所以非常关键,整体来说,二面的节奏非常快,和一面完全

    2022年7月9日
    16
  • 在一台机器上搭建多个redis实例

    在一台机器上搭建多个redis实例

    2021年10月27日
    48
  • Web 3D机房,智能数字机房HTML5 WebGL(ThreeJS)匠心打造「建议收藏」

    Web 3D机房,智能数字机房HTML5 WebGL(ThreeJS)匠心打造「建议收藏」在H5使用3D技术门槛比较低了,它的基础是WebGL(ThreeJS),一个OpenGL的浏览器子集,支持大部分主要3D功能接口。目前主流的浏览器都有较好的支持,IE需要11。最近web3D机房研发告一段落,有时间整理这段时间的一些成果。主要涉及使用H5、js、WebGL技术。机房3D效果图机房线缆和走线架线缆的连接走向和连接关系是管理员关注的焦点。机架中…

    2022年5月5日
    159
  • jetbrains 激活码[在线序列号]

    jetbrains 激活码[在线序列号],https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月20日
    55

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号