负采样方式

负采样方式一、随机负采样二、曝光未点击三、混合负采样四、重要性采样五、有偏采样六、NCE采样参考:[mixednegativesampling]MixedNegativeSamplingforLearningTwo-towerNeuralNetworksinRecommendations(2020) [Youtube]Sampling-Bias-CorrectedNeuralModelingforLargeCorpusItemRecomme

大家好,又见面了,我是你们的朋友全栈君。

目录

一、随机负采样

二、Real-Negative Subsampling

三、加权随机负采样

四、拒绝接受采样

五、Metropolis-Hastings ( MH ) 采样

六、吉布斯采样

七、蒙特卡洛采样

八、重要性采样(Importance Sampling)

九、有偏重要性采样

十、NCE采样

十一、混合负采样

十二、DFN模型:三类样本


推荐系统存在的数据问题:

1、训练数据跟线上数据分布不一致;

2、曝光未点击的item应该是偏正样本,而不是正样本or负样本;

3、数据稀疏问题,正负样本数量差距大;

4、长尾分布问题;

一、随机负采样

1、实现:在物料池中,随机选择负样本;

2、问题:头部效应很重,热门item有大量的正样本,而冷物品有大量负样本,难以均衡化;

3、改进方式:热门物品作正样本时,降采样;作负样本时,过采样;

二、Real-Negative Subsampling

1、实现:训练集中具有较高曝光频率的item的负样本三元组,以这个概率丢弃:

负采样方式

三、加权随机负采样

1、实现:根据广的曝光频次对item进行分组,将大于阈值的记为A_high, 小于阈值的为A_low, f(a)为item a的曝光频次,生成一个(0,1)之间的随机数p,若p小于P_l,则从A_low中使用均匀采样的方法得到一个item,否则从A_high中基于unigram distribution分布采样得到一个item。P_I的定义为:

负采样方式

四、拒绝接受采样

1、定义:均匀分布会使得一些低概率样本出现过多,所以可以通过拒绝部分样本的方式来获取所需分布。假设需要的分布为p(x),其他分布样本为q(x),二者关系为p(x) = c q(θ) α(x),为使得q(x) >= p(x),采样过程为:

负采样方式

五、Metropolis-Hastings ( MH ) 采样

1、定义:通过拒绝接受样本在计算过程中有大量计算是无用的。因此选取合适的分布 q 是十分必要的。但这通常都很难获得,所以产生了MH采样,通过构造符合细致平稳条件的转移矩阵Q来实现:

负采样方式

六、吉布斯采样

1、定义:Gibbs采样时特殊的MH采样。Gibbs抽样是马尔科夫链(MCMC)的一个特例,它交替的固定某一维度,然后通过其他维度的值来抽样该维度的值。特别地,gibbs采样只对z是高维(2维以上)情况有效。

详见吉布斯采样(Gibbs采样) – emanlee – 博客园

七、蒙特卡洛采样

1、思路:把和或者积分视作某分布下的期望,然后通过估计对应的平均值来近似这个期望:

负采样方式

 本质就是就是加权求和,其权重为随机变量 x 的概率分布(求和时)或者概率密度函数(求积分时)。概率越高的地方,该变量被采样的几率越大,对应函数值的权重越大,故通过采样数据的经验平均可以近似整体的和或积分。

八、重要性采样(Importance Sampling)

1、思路:在蒙特卡洛采样的公式 E[f(x)] = ∑p(x) f(x) 的基础上,构造分解:

负采样方式

 这样就可以把q(x)视为采样概率,估计 pf/q 在此分布下的期望。相当于在新的采样函数下,函数值 f(x) 被乘上了一个采样权重 p/q。

详见重要性采样(Importance Sampling) – 知乎

九、有偏重要性采样

1、思路:对于重要性采样,q分布的好坏可以显著影响蒙特卡洛估计的效率,所以目标是找到最优采样函数q。最优采样函数并不一定是适合采样的那个,只是方差最小的一个而已,其他能降低方差的 q 其实都可以。这种方法有一个优势,即不需要归一化的 p 或 q 分布。在处理离散变量时,有偏重要采样估计可以表示为:

负采样方式

十、NCE采样

详见噪声对比估计 Noise Contrastive Estimation

十一、混合负采样

详见【reco|负采样】Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations – 七克-7ke

十二、DFN模型:三类样本

1、定义:

  • 正样本(用户点击)
  • easy 负样本(随机筛选,模型很容易区分出)
  • hard负样本(能够增加模型训练难度,可提升模型关注细节的能力)

2、方式:

用其他样本的点击作为负样本;

取上一版本的召回排在101~500的样本作为负样本;

参考:

  1. [mixed negative sampling] Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations(2020)
  2. [Youtube] Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations(2019)
  3. [NCE采样] A fast and simple algorithm for training neural probabilistic language models(2012)
  4. [importance sampling] Quick Training of Probabilistic Neural Nets by Importance Sampling(2003)
  5. 推荐系统的负采样_qq_39125106的博客-CSDN博客_推荐系统负采样
  6. 采样算法简述 – 知乎
  7. PR Sampling Ⅰ: 蒙特卡洛采样、重要性采样及python实现 – 知乎
  8. 推荐系统论文阅读(三十三)-百度:谈谈召回任务中负样本的选取优化 – 简书
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/148068.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • polkit启动失败_zabbix4.4 启动失败分析

    polkit启动失败_zabbix4.4 启动失败分析zabbix是基于WEB界面提供分布式系统监视以及网络监视功能的企业级开源解决方案,能监视各种网络参数,保证服务器系统的安全运营;并提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问题。做为开源用户的支持者,我们大部分环境用的软件包含监控软件、数据库、继承应用、操作系统等都是用开源的,例如centos、PG、zabbix、openshift等,但是开源的在成熟度上是不错,但是安装软件有时比…

    2022年6月22日
    23
  • AutoEventWireup指令分析

    AutoEventWireup指令分析指令:指定当页和用户控件编译器处理ASP.NETWeb窗体页(.aspx)和用户控件(.ascx)文件时所使用的设置。在编译时发生作用,有些是如在asp.net2.0中将 后产生       protectedoverrideboolSupportAutoEvents{           get{               returnfalse; 

    2022年5月8日
    55
  • linux下安装tomcat的默认目录[通俗易懂]

    linux下安装tomcat的默认目录[通俗易懂]以Linux分支UbuntuServer为例。一、相关目录及作用说明  /etc/tomcat6-全局配置  /usr/share/tomcat6/-程序主目录  /usr/share/tomcat6/conf/Catalina/localhost/-本机部署的Catalina配置  /var/lib/tomcat6/-工作主目录  /var/l

    2022年5月5日
    212
  • 光场相机可以计算光线的方向,也可以计算目标的深度_相机感光器在哪里

    光场相机可以计算光线的方向,也可以计算目标的深度_相机感光器在哪里博主最近在搞光场相机方面的研究啦,好了废话不多说,开始!1.一些前言废话首先,来一下光场的基本概念,来自百度百科。光场(lightfield):就是指光在每一个方向通过每一个点的光量。从概念里

    2022年8月3日
    6
  • POJ 1252 Euro Efficiency

    POJ 1252 Euro Efficiency

    2022年1月8日
    51
  • myeclipce 快捷键大全

    myeclipce 快捷键大全

    2021年10月3日
    55

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号