【模式识别】OpenCV中使用神经网络 CvANN_MLP

【模式识别】OpenCV中使用神经网络 CvANN_MLPOpenCV的ml模块实现了人工神经网络(ArtificialNeuralNetworks,ANN)最典型的多层感知器(multi-layerperceptrons,MLP)模型。由于ml模型实现的算法都继承自统一的CvStatModel基类,其训练和预测的接口都是train(),predict(),非常简单。下面来看神经网络CvANN_MLP的使用~定义神经网络及参数:…

大家好,又见面了,我是你们的朋友全栈君。

OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks, ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型。由于ml模型实现的算法都继承自统一的CvStatModel基类,其训练和预测的接口都是train(),predict(),非常简单。

下面来看神经网络 CvANN_MLP 的使用~

定义神经网络及参数:

 

//Setup the BPNetwork
	CvANN_MLP bp; 
	// Set up BPNetwork's parameters
	CvANN_MLP_TrainParams params;
	params.train_method=CvANN_MLP_TrainParams::BACKPROP;
	params.bp_dw_scale=0.1;
	params.bp_moment_scale=0.1;
	//params.train_method=CvANN_MLP_TrainParams::RPROP;
	//params.rp_dw0 = 0.1; 
	//params.rp_dw_plus = 1.2; 
	//params.rp_dw_minus = 0.5;
	//params.rp_dw_min = FLT_EPSILON; 
	//params.rp_dw_max = 50.;

 

 

 

可以直接定义CvANN_MLP神经网络,并设置其参数。 BACKPROP表示使用back-propagation的训练方法,RPROP即最简单的propagation训练方法。

使用BACKPROP有两个相关参数:bp_dw_scale即bp_moment_scale:

【模式识别】OpenCV中使用神经网络 CvANN_MLP

使用PRPOP有四个相关参数:rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max:

【模式识别】OpenCV中使用神经网络 CvANN_MLP

上述代码中为其默认值。

设置网络层数,训练数据:

 

// Set up training data
	float labels[3][5] = {
  
  {0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}};
	Mat labelsMat(3, 5, CV_32FC1, labels);

	float trainingData[3][5] = { {1,2,3,4,5},{111,112,113,114,115}, {21,22,23,24,25} };
	Mat trainingDataMat(3, 5, CV_32FC1, trainingData);
	Mat layerSizes=(Mat_<int>(1,5) << 5,2,2,2,5);
	bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);//CvANN_MLP::SIGMOID_SYM
	                                           //CvANN_MLP::GAUSSIAN
	                                           //CvANN_MLP::IDENTITY
	bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);

layerSizes设置了有三个隐含层的网络结构:输入层,三个隐含层,输出层。输入层和输出层节点数均为5,中间隐含层每层有两个节点。

 

create第二个参数可以设置每个神经节点的激活函数,默认为CvANN_MLP::SIGMOID_SYM,即Sigmoid函数,同时提供的其他激活函数有Gauss和阶跃函数。

【模式识别】OpenCV中使用神经网络 CvANN_MLP

使用训练好的网络结构分类新的数据:

然后直接使用predict函数,就可以预测新的节点:

 

Mat sampleMat = (Mat_<float>(1,5) << i,j,0,0,0);
			Mat responseMat;
			bp.predict(sampleMat,responseMat);

 

完整程序代码:

 

 

 

//The example of using BPNetwork in OpenCV
//Coded by L. Wei
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include <iostream>
#include <string>

using namespace std;
using namespace cv;

int main()
{
	//Setup the BPNetwork
	CvANN_MLP bp; 
	// Set up BPNetwork's parameters
	CvANN_MLP_TrainParams params;
	params.train_method=CvANN_MLP_TrainParams::BACKPROP;
	params.bp_dw_scale=0.1;
	params.bp_moment_scale=0.1;
	//params.train_method=CvANN_MLP_TrainParams::RPROP;
	//params.rp_dw0 = 0.1; 
	//params.rp_dw_plus = 1.2; 
	//params.rp_dw_minus = 0.5;
	//params.rp_dw_min = FLT_EPSILON; 
	//params.rp_dw_max = 50.;

	// Set up training data
	float labels[3][5] = {
  
  {0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}};
	Mat labelsMat(3, 5, CV_32FC1, labels);

	float trainingData[3][5] = { {1,2,3,4,5},{111,112,113,114,115}, {21,22,23,24,25} };
	Mat trainingDataMat(3, 5, CV_32FC1, trainingData);
	Mat layerSizes=(Mat_<int>(1,5) << 5,2,2,2,5);
	bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);//CvANN_MLP::SIGMOID_SYM
	                                           //CvANN_MLP::GAUSSIAN
	                                           //CvANN_MLP::IDENTITY
	bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);


	// Data for visual representation
	int width = 512, height = 512;
	Mat image = Mat::zeros(height, width, CV_8UC3);
	Vec3b green(0,255,0), blue (255,0,0);
	// Show the decision regions given by the SVM
	for (int i = 0; i < image.rows; ++i)
		for (int j = 0; j < image.cols; ++j)
		{
			Mat sampleMat = (Mat_<float>(1,5) << i,j,0,0,0);
			Mat responseMat;
			bp.predict(sampleMat,responseMat);
			float* p=responseMat.ptr<float>(0);
			float response=0.0f;
			for(int k=0;k<5;i++){
			//	cout<<p[k]<<" ";
				response+=p[k];
			}
			if (response >2)
				image.at<Vec3b>(j, i)  = green;
			else  
				image.at<Vec3b>(j, i)  = blue;
		}

		// Show the training data
		int thickness = -1;
		int lineType = 8;
		circle(	image, Point(501,  10), 5, Scalar(  0,   0,   0), thickness, lineType);
		circle(	image, Point(255,  10), 5, Scalar(255, 255, 255), thickness, lineType);
		circle(	image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
		circle(	image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType);

		imwrite("result.png", image);        // save the image 

		imshow("BP Simple Example", image); // show it to the user
		waitKey(0);

}

结果:

 

【模式识别】OpenCV中使用神经网络 CvANN_MLP

 

 

 

(转载请注明作者和出处:http://blog.csdn.net/xiaowei_cqu 未经允许请勿用于商业用途)

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/148610.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • ADO.net中常用的对象介绍

    ADO.NET的对象主要包括:DataSet,DataTable,DataColumn,DataRow,和DataRelation。DataSet:这个对象是一个集合对象,它可以包含任意数量的数据表

    2021年12月20日
    43
  • 进程的同步、互斥、通信的区别,进程与线程同步的区别[通俗易懂]

    进程的同步、互斥、通信的区别,进程与线程同步的区别[通俗易懂]这两天看进程的同步与通信,看了几本书上的介绍,也从网上搜了很多资料,越看越迷惑,被这几个问题搞得很纠结。进程同步与互斥的区别?进程的同步方式有哪些?进程的通信方式有哪些?进程同步与通信的区别是什么?线程的同步/通信与进程的同步/通信有区别吗?在好多教材上(包括国内与国外的)也没有明确这些概念,现在对每个问题还没有准确的答案,下面将自己的理解记下来,以后再补充。参考资料:《操作系统教程》孙钟秀主编…

    2025年5月26日
    0
  • JSP程序设计课后习题答案

    JSP程序设计课后习题答案第一章JSP概述1-1JSP的全称是什么?JSP有什么优点?JSP与ASP、PHP的相同点是什么?JSP的全称是JavaServerPages。优点:跨平台、分离静态内容和动态内容、可重复使用的组件、沿用了JavaServlet的所有功能、具有预编译性。共同点:可以在页面中加入脚本代码来生成动态内容。1-2JSP中可重复使用的组件有哪些?JavaBean组件、JSP的标准标签和自定义标签。1-3什么是JSP的预编译特征?预编译是JSP的另一个重要的特性。JSP

    2022年6月16日
    23
  • 字符串数组转集合_安全方法把字符串转集合

    字符串数组转集合_安全方法把字符串转集合//controller中接收id数组, //html页面; varids=$(‘#yourGrid’).jqGrid(‘getGridParam’,’selarrrow’); //bean属性设置值,表达提交方式, $(“#ids”).val(JSON.stringify(ids)); //controller List<String>ids=JSON.par…

    2022年9月19日
    0
  • qt通过OpenGL实现3d游戏开发框架

    qt通过OpenGL实现3d游戏开发框架开发环境:win8编程语言c++IDE:QtCreatoropengl版本:opengles3.0(可编程渲染管线,着色器语言)OpenGLES(OpenGLforEmbeddedSystems)是OpenGL三维图形API的子集,针对手机、PDA和游戏主机等嵌入式设备而设计。该API由Khronos集团定义推广,Khronos是一个图形软硬件行业协会,…

    2022年5月25日
    32
  • docker(11)Dockerfile 中的COPY与ADD 命令[通俗易懂]

    docker(11)Dockerfile 中的COPY与ADD 命令[通俗易懂]前言Dockerfile中提供了两个非常相似的命令COPY和ADD,本文尝试解释这两个命令的基本功能,以及其异同点,然后总结其各自适合的应用场景。Build上下文的概念在使用dock

    2022年7月31日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号