MapReduce编程快速入门

MapReduce编程快速入门MapReduce编程规范用户编写的程序分成三个部分:Mapper,Reducer,Driver(提交运行mr程序的客户端)Mapper阶段继承Mapper类(1)用户自定义的Mapper要继承自己的父类(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)(3)Mapper中的业务逻辑写在map()方法中(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)(5)map()方法(maptask进程)对每一个<K,V>调用一次Reducer阶段继承Reduce

大家好,又见面了,我是你们的朋友全栈君。

MapReduce编程规范

用户编写的程序分成三个部分:Mapper,Reducer,Driver(提交运行mr程序的客户端)

Mapper阶段继承Mapper类

(1)用户自定义的Mapper要继承自己的父类
(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)
(3)Mapper中的业务逻辑写在map()方法中
(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)
(5)map()方法(maptask进程)对每一个<K,V>调用一次

Reducer阶段继承Reducer类

(1)用户自定义的Reducer要继承自己的父类
(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
(3)Reducer的业务逻辑写在reduce()方法中
(4)Reducetask进程对每一组相同k的<k,v>组调用一次reduce()方法

Driver阶段使用Driver模板

整个程序需要一个Drvier来进行提交,提交的是一个描述了各种必要信息的job对象

案例实操

1.需求分析

在给定的文本文件中统计输出每一个单词出现的总次数
(1)输入数据 hello.txt

dev1 dev1
ss ss
cls cls
jiao
banzhang
xue
hadoop

(2)期望输出数据

dev1     2
banzhang    1
cls    2
hadoop    1
jiao    1
ss    2
xue    1

2.开发步骤

按照MapReduce编程规范,分别编写Mapper,Reducer,Driver

》》1输入数据

hadoop hdfs 
mr mr

》》2输出数据

hadoop 1
hdfs 1
mr 2

》》3 Mapper
3.1 将MapTask传给我们的文本内容先转换成String
3.2 根据空格将这一行切分成单词
3.3 将单词输出为<单词,1>
》》4 Reducer
4.1 汇总各个key的个数
4.2 输出该key的总次数
》》5 Driver
5.1 获取配置信息,获取job对象实例
5.2 指定本程序的jar所在的路径
5.3 关联Mapper/Reducer的业务类
5.4 指定Mapper输出数据的kv类型
5.5 指定最终输出的数据的kv类型
5.6 指定job的输入原始文本所在目录
5.7 指定job的输出结果所在目录
5.8 提交作业

3 项目搭建

(1)Idea 创建maven工程
在这里插入图片描述

(2)在pom.xml文件中添加如下依赖

<dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>RELEASE</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>2.8.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.7.2</version>
        </dependency>
</dependencies>

(2)在项目的resources目录下,新建一个文件,命名为”log4j.properties”,在文件中填入。
在这里插入图片描述

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

4.编写程序

(1)编写Mapper类

package com.dev1.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ 
   
    
    Text k = new Text();
    IntWritable v = new IntWritable(1);
    
    @Override
    protected void map(LongWritable key, Text value, Context context)    throws IOException, InterruptedException { 
   
        
        // 1 获取一行
        String line = value.toString();
        
        // 2 切割
        String[] words = line.split(" ");
        
        // 3 输出
        for (String word : words) { 
   
            Text k = new Text();
            k.set(word);
            context.write(k, v);
        }
    }
}

(2)编写Reducer类

package com.dev1.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ 
   

int sum;
IntWritable v = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { 
   
        
        // 1 累加求和
        sum = 0;
        for (IntWritable count : values) { 
   
            sum += count.get();
        }
        
        // 2 输出
       v.set(sum);
        context.write(key,v);
    }
}

(3)编写Driver驱动类

package com.dev1.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordcountDriver { 
   

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { 
   

        // 1 获取配置信息以及封装任务
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 2 设置jar加载路径
        job.setJarByClass(WordcountDriver.class);

        // 3 设置map和reduce类
        job.setMapperClass(WordcountMapper.class);
        job.setReducerClass(WordcountReducer.class);

        // 4 设置map输出
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 5 设置最终输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        // 6 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 提交
        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : 1);
    }
}

5.本地测试
在这里插入图片描述

(1 )如果电脑系统是win7的就将win7的hadoop jar包解压
如果电脑系统是win10的就将win10的hadoop jar包解压

注意: 1 win8电脑和win10家庭版操作系统可能有问题,需要重新编译源码或者更改操作系统。 2 非中文,无空格路径

(2)在Eclipse/Idea上运行程序
运行前必须设置参数
在这里插入图片描述
在图中给定两个路径
在这里插入图片描述

6.集群上测试
(0)用maven打jar包,需要添加的打包插件依赖
注意:标记红颜色的部分需要替换为自己工程主类

<build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>2.3.2</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin </artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                    <archive>
                        <manifest>
                            <mainClass>com.dev1.wordcout.WordcountDriver</mainClass>
                        </manifest>
                    </archive>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

(1)将程序打成jar包。
在这里插入图片描述

修改不带依赖的jar包名称为wc.jar,并拷贝该jar包到Hadoop集群。
(2)启动Hadoop集群
在hadoop102上

start dfs.sh

在hadoop103上

start-yarn.sh

(3)上传文本文件到 input文件夹

hdfs dfs -mkdir -p /user/dev1/input
cd /opt/module/hadoop-2.7.2
hdfs dfs -put   ./words.txt  /user/dev1/input

input文件夹下只能有文本文件
(4)执行WordCount程序

hadoop jar  wc.jar com.dev1.wordcount.WordcountDriver /user/dev1/input /user/dev1/output
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/149234.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 数据库系统原理——概述「建议收藏」

    数据库系统原理——概述「建议收藏」穷则独善其身,达则兼济天下一.什么是数据库狭义:存储数据的仓库广义:可以对数据进行存储和管理的软件以及数据本身统称为数据库数据库是由表、关系、操作组成二.为什么需要数据库几乎所有的应用软件的后台都需要数据库数据存储数据占用空间小,容易持久保存数据库的内容是存储在硬盘上,掉电之后任然存在存储比较安全软件是加密的,只能通过DBMS打开容易维护和升级使用SQL语句方便操作数据数据库移植比较容易简化对数据的操作为将来学习Oracle做准备.

    2025年6月7日
    1
  • activiti7入门_react demo

    activiti7入门_react demo项目框架描述项目基于springboot2.1.1<parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.1.1.RELE…

    2022年8月30日
    5
  • vc++连接sql数据库_vscode怎么连接数据库

    vc++连接sql数据库_vscode怎么连接数据库vc连接mysql数据库的方法:首先打开VC6;然后在中间列表框中添加本地安装MySQL的include目录路径;接着选中“Libraryfiles”并添加MySQL的Lib目录路径;最后进行编程测试即可。一、MySQL的安装Mysql的安装去官网下载就可以。。。最新的是5.7版本。。二、VC6.0的设置(1)打开VC6.中选0工具栏Tools菜单下的Options选项,在Directorie…

    2022年8月12日
    5
  • awvs13使用教程_脚本网

    awvs13使用教程_脚本网你可以在以下渠道联系到我,转载请注明文章来源地址~知乎:Sp4rkWGITHUB:Sp4rkWB站:一只技术君博客:https://sp4rkw.blog.csdn.net/联系邮箱:getf_own@163.com文章目录前言核心接口仪表盘接口新增任务接口设置扫描速度启动扫描任务丝滑脚本前言最近在改reaper的awvs互动功能,因为自己的服务器垃圾,一次最多扫四个站,否则就卡死了。所以需要对现有的批量脚本进行修改处理。逻辑比较简单:拿到web资产,django异步启扫描任务从l

    2022年9月22日
    3
  • 怎么看计算机的历史记录手机_科学计算器怎么查看历史记录

    怎么看计算机的历史记录手机_科学计算器怎么查看历史记录如何查看电脑历史操作记录?随便打开我的电脑或者浏览器,然后同时按下Ctrl+H组合键,窗口的左侧就会弹出浏览过的历史记录的小窗口,选择相应的日期之后下拉菜单后,会有浏览的网页记录和我的电脑(下图),双击我的电脑,出现的就是这一天你的电脑上的被浏览过的文件夹或文件(前提是,浏览者,并没有删除历史记录,因为在此,选中目标,单击右键选择删除,同样也是可以将今天的浏览记录删除以上只是简单的IE记录查看!电…

    2025年7月20日
    2
  • DropDownList1_SelectedIndexChanged-的使用

    DropDownList1_SelectedIndexChanged-的使用怎样使当DropDownList1改变时也改变相应的DropDownList2的值?实现二级联动。如省市联动啊。以下有代码。将DropDownList1的AutoPostBack属性设为true导入命名空间ImportsSystem.DataImportsSystem.Data.SqlClientPrivateSubPage_Load(ByValsen

    2022年7月18日
    13

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号