SIFT matlab源代码解析[通俗易懂]

SIFT matlab源代码解析[通俗易懂]SIFTmatlab源代码解析sift是目前常用的localfeature的描述子。sift特征匹配算法可以处理两幅图像之间发生一些平移、旋转、仿射等匹配问题。因为早前自己要做一个图像拼接的问题,所以用到了sift。写这篇blog,是因为自己准备向CV进军,开始着手写blog来积累知识,这也是我第一篇blog,虽然这篇blog很简陋,纯属向sift致敬,但也方便一些初学者使用吧。以后也会不定期对

大家好,又见面了,我是你们的朋友全栈君。

sift是目前常用的local feature的描述子。sift特征匹配算法可以处理两幅图像之间发生一些平移、旋转、仿射等匹配问题。因为早前自己要做一个图像拼接的问题,所以用到了sift。写这篇blog,是因为自己准备向CV进军,开始着手写blog来积累知识,这也是我第一篇blog,虽然这篇blog很简陋,纯属向sift致敬,但也方便一些初学者使用吧。以后也会不定期对自己的一些在CV的见解进行发表,希望能通过这个和大家相互讨论。如果您想对其原理有个透彻的理解,可以参考下面这篇blog,博主写的非常详尽 —— [ sift算法详解 ]

代码分析

首先,你可以从David Lowe的个人网站http://www.cs.ubc.ca/~lowe/keypoints/” target = “-blank”>[website]找到代码的Version4,download后可以得到有4个m函数,主要看match.m,我对其进行了中文注解:

    % num = match(image1, image2)
    %
    % This function reads two images, finds their SIFT features, and
    % displays lines connecting the matched keypoints. A match is accepted
    % only if its distance is less than distRatio times the distance to the
    % second closest match.
    % It returns the number of matches displayed.
    %
    % Example: match('scene.pgm','book.pgm');
    % 上面是英文注解,大概意思就是这个函数是找出两幅图能匹配的特征点的个数
    % 你可以在该目录下输入:match('scene.pgm','book.pgm');
    % 便可以得到该文件夹下的两个图像匹配点有多少对。
    function num = match(image1, image2)

    % Find SIFT keypoints for each image
    % 下面两条语句就是找两个图像的sift特征点,其中对于image1而言
    % im1为灰度图像,des1为128维向量,loc1是位置信息
    [im1, des1, loc1] = sift(image1);
    [im2, des2, loc2] = sift(image2);

    % 这个值非常重要,在这里你可以简单理解为它是匹配的一个阈值
    % 或者这样说,distRatio值越大,能匹配的点越多,当然错匹配点也越多
    % 你可以试一下把distRatio改为1时看会怎样
    distRatio = 0.6;   

    % For each descriptor in the first image, select its match to second image.
    % 每一层循环就是把image1的每个特征点的128维向量与image2所有向量做一个内积,
    % 对所求得到的数求反cos值并且升序排序后,当前两个值之间的大小差距在由distRatio确定的范围内
    % 则image1的这个特征点在image2中有对应的匹配点,match(i)赋值为1
    % 因为sort会保留下标自然也就找到这个匹配点的坐标
    des2t = des2';                          % Precompute matrix transpose
    for i = 1 : size(des1,1)
       dotprods = des1(i,:) * des2t;        % Computes vector of dot products
       [vals,indx] = sort(acos(dotprods));  % Take inverse cosine and sort results

       % Check if nearest neighbor has angle less than distRatio times 2nd.
       if (vals(1) < distRatio * vals(2))
          match(i) = indx(1);
       else
          match(i) = 0;
       end
    end


    % Create a new image showing the two images side by side.
    % appendimages就是把两张图像在一个figure中一块显示出来,没什么好解释
    im3 = appendimages(im1,im2);

    % Show a figure with lines joining the accepted matches.
    figure('Position', [100 100 size(im3,2) size(im3,1)]);
    colormap('gray');
    imagesc(im3);
    hold on;
    cols1 = size(im1,2);

    % 以下语句就是在匹配的两点之间画条线
    for i = 1: size(des1,1)
      if (match(i) > 0)
        line([loc1(i,2) loc2(match(i),2)+cols1], ...
             [loc1(i,1) loc2(match(i),1)], 'Color', 'c');
      end
    end
    hold off;
    num = sum(match > 0);
    fprintf('Found %d matches.\n', num);

你可以在command window中输入: match(‘scene.pgm’,’book.pgm’);
便可以得到下图:
origin result

sift.m因为主要的求解方式被C混编了,所以看不到,所以只给出该函数返回的参数:
% image:灰度图像
% descriptors:对特征点进行描述的128维向量
% locs:是一个4维向量组,前两维为特征点的坐标,第三维是尺度,第四维为方向,详细可以看showkeys.m

% showkeys(image, locs)
%
% This function displays an image with SIFT keypoints overlayed.
% Input parameters:
% image: the file name for the image (grayscale)
% locs: matrix in which each row gives a keypoint location (row,
% column, scale, orientation)

% 该函数是对提取出来的sift特征点在图像上进行一个显示
% 你可以在command window中先输入[image,descritors,locs] = sift('image's path');
% showkeys(image,locs);
% 如果你的图像是彩色的,则可以再进行一次读入
% img = imread('image's path');
% showkeys(image,locs);
function showkeys(image, locs)

disp('Drawing SIFT keypoints ...');

% Draw image with keypoints
% 下面这是对出来的figure进行一些参数输入,这个不重要
figure('Position', [50 50 size(image,2) size(image,1)]);
colormap('gray');
imagesc(image);
hold on;
imsize = size(image);
% 画出每一个坐标,还记得前面说的locs是四维向量,前两个是横纵坐标,
% 第三个是尺度,第四个是方向,ok,那么就可以画出来了哟。
for i = 1: size(locs,1)
    % Draw an arrow, each line transformed according to keypoint parameters.
    % 这里的Transform函数在后面定义,知道为什么一个点要画三次么,
    % 因为它要画一个箭头,即------>这样是需要画3条线
    TransformLine(imsize, locs(i,:), 0.0, 0.0, 1.0, 0.0);
    TransformLine(imsize, locs(i,:), 0.85, 0.1, 1.0, 0.0);
    TransformLine(imsize, locs(i,:), 0.85, -0.1, 1.0, 0.0);
end
hold off;


% ------ Subroutine: TransformLine -------
% Draw the given line in the image, but first translate, rotate, and
% scale according to the keypoint parameters.
%
% Parameters:
% Arrays:
% imsize = [rows columns] of image
% keypoint = [subpixel_row subpixel_column scale orientation]
%
% Scalars:
% x1, y1; begining of vector
% x2, y2; ending of vector

% 给出的
function TransformLine(imsize, keypoint, x1, y1, x2, y2)

% The scaling of the unit length arrow is set to approximately the radius
% of the region used to compute the keypoint descriptor.
% 长度放大6倍
len = 6* keypoint(3);

% Rotate the keypoints by 'ori' = keypoint(4)
s = sin(keypoint(4));
c = cos(keypoint(4));

% Apply transform

%画一条线需要起点和终点,两个点所以搞出四个坐标
r1 = keypoint(1) - len * (c * y1 + s * x1);
c1 = keypoint(2) + len * (- s * y1 + c * x1);
r2 = keypoint(1) - len * (c * y2 + s * x2);
c2 = keypoint(2) + len * (- s * y2 + c * x2);

line([c1 c2], [r1 r2], 'Color', 'c');

给出一张彩色的showkeys的效果:R8

blending.m就是把两张图片在同一个figure中展示,这个就不需要过多解释了。

第一篇博文,水是水了点,慢慢会改善。希望学习CV的博友多加好友,共同学习。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/149369.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • PyCharm最新激活码PyCharm2021.5.3有效【在线注册码/序列号/破解码】「建议收藏」

    PyCharm最新激活码PyCharm2021.5.3有效【在线注册码/序列号/破解码】,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月18日
    93
  • 哈佛结构与冯.诺依曼结构(普林斯顿结构)[通俗易懂]

    哈佛结构与冯.诺依曼结构(普林斯顿结构)[通俗易懂]过去知道计算机的体系结构分为哈佛结构与冯.诺依曼结构,但并没有去总结他们有什么区别。今天来看看它们有什么区别。冯.诺依曼结构,又称为普林斯顿结构。是一种经典的体系结构,有CPU,总线,外部存储器组成。这种体系结构采用程序代码存储器与数据存储器合并在同一存储器里,但程序代码存储器地址与数据存储器地址分别指向不同的物理地址。程序指令宽度与数据宽度一样。数据总线和地址总线共用。但是随着CPU设计

    2022年10月4日
    3
  • Ubuntu如何卸载软件_linux卸载软件包命令

    Ubuntu如何卸载软件_linux卸载软件包命令步骤:1、Ctrl+Alt+T或者空白处右键—>选择openterminal,打开终端;2、输入命令:dpkg–list浏览并找到已安装的程序名字,baidunetdisk3、输入命令:不完全卸载:sudoapt-getremovebaidunetdisk完全卸载:sudoapt-get–purgeremovebaidunetdisk————————————————原文链接:https://blog.csdn.net/UPPER_lucky/article/

    2022年10月6日
    1
  • 服务器对cpu的性能要求比较高_服务器cpu家用缺点

    服务器对cpu的性能要求比较高_服务器cpu家用缺点如今各种大型游戏对我们的电脑性能的要求越来越高,很多用了三四年的老电脑已经带不动最新的3A巨作了,这时候大家就需要考虑更换电脑或者是升级配置了。假如选择升级配置,效果最显著的就要数更换CPU和显卡了,今天编者就来谈谈由于种种原因,性价比很低几款CPU,假如大家想要更换以下的几款CPU可要三思了。首先,编者不推荐买英特尔的第六、七代酷睿处理器,以i57500为例,散片价格在1200元左右,与同为四…

    2022年9月19日
    7
  • model.addattribute()的作用___attribute__()

    model.addattribute()的作用___attribute__()在前台用JS写的脚本方法,除了可以直接用在前台控件的属性中,还可以在后台运用。即在后台页面加载时,调用JS方法。语法格式有两种,如下:1.第一种写法:控件ID名.Attributes.Add(“事件名称”,“JS方法”);如:一个按钮控件Button1.Attributes.Add(“onclick”,“returnconfirm(‘确认?’)”);2.另一写法…

    2022年9月26日
    2
  • 深入理解okio的优化思想

    深入理解okio的优化思想随着越来越多的应用使用OKHttp来进行网络访问,我们有必要去深入研究OKHTTP的基石,一套更加轻巧方便高效的IO库okio.OKIO的优点有同学或会问,目前Java的IO已经非常成熟了,为什么还要使用新的IO库呢?笔者认为,答案有以下几点:低的CPU和内存消耗。后面我们会分析到,okio采用了segment的机制进行内存共享和复用,尽可能少的去申请内存,同时也就降低了GC的频率。我们知道,过于

    2022年6月8日
    35

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号