电脑黑屏只有鼠标箭头,任务管理器打不开,F8什么的都不管用「建议收藏」

电脑黑屏只有鼠标箭头,任务管理器打不开,F8什么的都不管用「建议收藏」1.故障描述自从电脑装了虚拟机之后,明显感觉电脑变卡,吃饭的时候处于待机状态,回来就看见屏幕黑屏了,只剩一个鼠标箭头2.自己尝试过的方法1)ctrl+alt+del,没卵用,打不开任务管理器2)拔掉鼠标,键盘,电源线,还是不行,最多拔掉鼠标,箭头不见了而已,依然黑屏3)长按关机键,强行关机,没用,还是黑屏,重启时按F8没用,老子F…

大家好,又见面了,我是你们的朋友全栈君。

1.故障描述

      自从电脑装了虚拟机之后,明显感觉电脑变卡,吃饭的时候处于待机状态,回来就看见屏幕黑屏了,只剩一个鼠标箭头

2.自己尝试过的方法

      1)ctrl+alt+del,没卵用,打不开任务管理器

      2)拔掉鼠标,键盘,电源线,还是不行,最多拔掉鼠标,箭头不见了而已,依然黑屏

      3)长按关机键,强行关机,没用,还是黑屏,重启时按F8没用,老子F2都按了

      4)砸电脑……并没有

3.上网查

      上网查了一下,全是相互抄袭,什么打开任务管理器,一大堆废话,能打开任务管理还用你说,*****,5个*来表达我内心的想法,唯一的可能的,只是可能,靠谱的方法:U盘重装系统

4.我的笨方法

      重装系统我觉得可行,但觉得太麻烦,需要安装的软件太多,所以我决定……………….拔掉电源线,让电脑把电耗完,耗完之后重启,正好给了自己一个提前下班的理由,美滋滋.

      第二天来上班,抱着忐忑的心,插入电源线,打开电脑,OK,成功了,故障解决了,我还能说什么,

      

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/150271.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Linux日志管理「建议收藏」

    Linux日志管理「建议收藏」一、日至来源日至由程序产生,存储在内存条中1、日志的查看>/nar/log/messages                ##清空目录内容cat/var/log/messages              ##查看日志systemctlstartrsyslog.service    ##加载日志收集/var/log/secure         …

    2022年6月8日
    42
  • VS Code关闭eslint校验

    VS Code关闭eslint校验一、产生原因:在编写vue代码的时候,一直因为格式问题报错,按照要求改了格式,虽不报错,但当选择格式化文档,就会再次报错,所以需要关闭格式校验功能。二、解决办法:①:若报错,可将鼠标放在报错位置,按照提示内容,单机右键,选择快速恢复;但后期影响继续存在②:关闭校验功能步骤:1.点击左下角的设置图标并选择设置2.搜索eslint,如图并勾选可取消报错:3.重启VSCode,编译时不再报错…

    2022年6月11日
    69
  • java中sqrt函数的详解[通俗易懂]

    java中sqrt函数的详解[通俗易懂]一、原理:牛顿迭代法具体解释:牛顿迭代法求平方根那我们怎么用牛顿迭代法呢?首先要明白,牛顿迭代法求的是函数和X轴的交点的横坐标,也就是我们说的根1)那么第一步就是构建曲线了。假设有一个数c,我们求它的平方根x,那么有一个等式,x^2=c;挪到一边就是求f= x^2-c的根x2)带入上面的公式也就是 3)既然是个迭代,那么

    2022年5月7日
    80
  • C++的三种单例模式—–深度解析

    C++的三种单例模式—–深度解析简介因为在设计或开发中,肯定会有这么一种情况,一个类只能有一个对象被创建,如果有多个对象的话,可能会导致状态的混乱和不一致。这种情况下,单例模式是最恰当的解决办法。它有很多种实现方式,各自的特性不相同,使用的情…

    2022年5月27日
    40
  • python中使用递归实现斐波那契数列

    python中使用递归实现斐波那契数列python中使用递归实现斐波那契数列python中使用递归实现斐波那契数列先来了解一下斐波那契数列(Fibonaccisequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N)在现代物理、

    2022年6月16日
    32
  • Linux移植的一般过程

    前一阵子在公司移植Linux2.6到一块ARM11的开发板上,下面粗略讲讲移植Linux的一般过程。一开始的UBOOT的移植不多说了。UBOOT最后有两种方式进入Linux,一种是使用uImage,

    2021年12月26日
    250

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号