Prophet 初学笔记[通俗易懂]

Prophet 初学笔记[通俗易懂]本文介绍Prophet模型的简单调用。

大家好,又见面了,我是你们的朋友全栈君。

本文介绍 Prophet 模型的简单调用。

 

(一)日志设置为不输出

import os

class SuppressStdoutStderr(object):
    """
    A context manager for doing a "deep suppression" of stdout and stderr in
    Python, i.e. will suppress all print, even if the print originates in a
    compiled C/Fortran sub-function.

    This will not suppress raised exceptions, since exceptions are printed
    to stderr just before a script exits, and after the context manager has
    exited (at least, I think that is why it lets exceptions through).
    """

    def __init__(self):
        # open a pair of null files
        self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]

        # save the actual stdout (1) and stderr (2) file descriptors
        self.save_fds = (os.dup(1), os.dup(2))

    def __enter__(self):
        # assign the null pointers to stdout and stderr
        os.dup2(self.null_fds[0], 1)
        os.dup2(self.null_fds[1], 2)

    def __exit__(self, *_):
        # reassign the real stdout/stderr back to (1) and (2)
        os.dup2(self.save_fds[0], 1)
        os.dup2(self.save_fds[1], 2)

        # close the null files
        os.close(self.null_fds[0])
        os.close(self.null_fds[1])
        os.close(self.save_fds[0])
        os.close(self.save_fds[1])

 

(二)Prophet 预测模型 class,与官方 Prophet 结构相似,但不继承

1. 初始化

from datetime import datetime, timedelta
from typing import Tuple
import numpy as np
import pandas as pd

from fbprophet import Prophet
from fbprophet.diagnostics import cross_validation

STD_D_STR = "%Y-%m-%d"  # '%m': 月份,'%M': 分钟

class ProphetPredictor(object):
    def __init__(self, x_train: pd.DataFrame,
                 trg_st_dt: datetime, tm_step: int, his_st_dt: datetime, his_en_dt: datetime,
                 cv_horizon: str, cv_period: str, cv_initial: str,
                 n_changepoints=None, changepoint_range=0.7,
                 yearly_seasonality=False, weekly_seasonality=True, daily_seasonality=False,
                 holidays=None, seasonality_mode='multiplicative',
                 seasonality_prior_scale=10, holidays_prior_scale=0, changepoint_prior_scale=0.05):
        """
        initialisation

        :param x_train:  数据集, ['ds', 'y']
        :param trg_st_dt:  预测开始日期
        :param tm_step:  预测时间间隔
        :param his_st_dt:  训练集开始日期
        :param his_en_dt:  训练集结束日期  todo: 允许使用的训练集结束日期必须严格小于预测开始日期
        :param cv_horizon:  交叉验证 horizon 参数, '3 days' 格式
        :param cv_period:  交叉验证 period 参数, '3 days' 格式
        :param cv_initial:  交叉验证 initial 参数, '3 days' 格式
        :param n_changepoints:  Changepoint 最大数量
        :param changepoint_range:  Changepoint 在历史数据中出现的时间范围
        :param yearly_seasonality:  年周期性
        :param weekly_seasonality:  周周期性
        :param daily_seasonality:  日周期性
        :param holidays:  节假日或特殊日期
        :param seasonality_mode:  季节模型方式, {'additive', 'multiplicative'}
        :param seasonality_prior_scale:  改变周期性影响因素的强度
        :param holidays_prior_scale:  改变假日模型的强度
        :param changepoint_prior_scale:  设定自动突变点选择的灵活性,值越大越容易出现 Changepoint
        """

        # Prophet 模型参数
        self.params = {
            "n_changepoints": n_changepoints,
            "changepoint_range": changepoint_range,
            "yearly_seasonality": yearly_seasonality,
            "weekly_seasonality": weekly_seasonality,
            "daily_seasonality": daily_seasonality,
            "holidays": holidays,
            "seasonality_mode": seasonality_mode,
            "seasonality_prior_scale": seasonality_prior_scale,
            "holidays_prior_scale": holidays_prior_scale,
            "changepoint_prior_scale": changepoint_prior_scale
        }

        self.trg_st_dt = datetime.strptime(trg_st_dt, STD_D_STR) if isinstance(trg_st_dt, str) else trg_st_dt
        self.tm_step = tm_step
        self.trg_en_dt = self.trg_st_dt + timedelta(days=tm_step - 1)
        self.his_st_dt = datetime.strptime(his_st_dt, STD_D_STR) if isinstance(his_st_dt, str) else his_st_dt
        self.his_en_dt = datetime.strptime(his_en_dt, STD_D_STR) if isinstance(his_en_dt, str) else his_en_dt

        # 提前期 = 预测开始日期 - 历史数据最晚日期 - 1 (认为次日预测提前期为0)
        self.ahead = (self.trg_st_dt - self.his_en_dt).days - 1

        self.x_train = x_train[['ds', 'y']].copy()
        self.model = None
        self.cv_horizon = cv_horizon
        self.cv_period = cv_period
        self.cv_initial = cv_initial
        self.map_err = 100

2. 模型训练

    def fit(self):
        """
        模型训练
        :return: 无
        """

        self.x_train = self.x_train[
            (datetime.strftime(self.his_st_dt, STD_D_STR) <= self.x_train['ds'])
            & (self.x_train['ds'] <= datetime.strftime(self.his_en_dt, STD_D_STR))].reset_index(drop=True)

        self.model = Prophet(**self.params)
        with SuppressStdoutStderr():
            self.model.fit(df=self.x_train)

3. 交叉验证

    def cv(self, params=None) -> float:
        """
        交叉验证
        :param params:  模型参数,网格寻参时不为 None
        :return: map_err:  平均绝对百分比误差(MAPE)
        """

        params_ = params if params else self.params
        self.model = Prophet(**params_)
        with SuppressStdoutStderr():
            self.model.fit(self.x_train)
            cv_result = cross_validation(self.model,
                                         horizon=self.cv_horizon, period=self.cv_period, initial=self.cv_initial)

        # 平均绝对百分比误差(MAPE)
        map_err = np.mean(np.abs(cv_result['yhat'] - cv_result['y']) / cv_result['y']) * 100

        return map_err

4. 网格寻参

    def grid_search(self) -> pd.DataFrame:
        """
        网格寻参
        :return: df_search:  寻参记录
        """

        list_n_changepoints = [i for i in range(2, 7)]
        list_changepoint_range = [i / 10 for i in range(5, 10)]
        list_seasonality_mode = ["additive", "multiplicative"]
        list_seasonality_prior_scale = [0.1, 0.5, 1, 5, 10]
        list_changepoint_prior_scale = [0.1, 0.5, 1, 5, 10]

        list_search = []
        for nc in list_n_changepoints:
            for cr in list_changepoint_range:
                for sm in list_seasonality_mode:
                    for sps in list_seasonality_prior_scale:
                        for cps in list_changepoint_prior_scale:
                            params = {
                                "n_changepoints": nc,
                                "changepoint_range": cr,
                                "yearly_seasonality": False,
                                "weekly_seasonality": True,
                                "daily_seasonality": False,
                                "holidays": None,
                                "seasonality_mode": sm,
                                "seasonality_prior_scale": sps,
                                "holidays_prior_scale": 0,
                                "changepoint_prior_scale": cps
                            }
                            score = self.cv(params=params)
                            list_search.append([nc, cr, sm, sps, cps, score])

                            if score < self.map_err:
                                self.map_err, self.params = score, params
                                print("current best mse:  {0};  current params:  {1}".format(round(self.map_err, 4),
                                                                                             params))

        df_search = pd.DataFrame(data=list_search,
                                 columns=['n_changepoints', 'changepoint_range', 'seasonality_mode',
                                          'seasonality_prior_scale', 'changepoint_prior_scale', 'mse'])

        return df_search

5. 预测

    def predict(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
        """
        预测
        :return: df_predict_y:  预测数据
        :return: df_history_y:  历史数据
        """

        df_future = self.model.make_future_dataframe(periods=self.ahead + self.tm_step,
                                                     include_history=True).dropna().reset_index(drop=True)
        df_predict = self.model.predict(df=df_future)
        df_predict['ds'] = df_predict['ds'].apply(lambda x: str(x.date()))

        df_predict_y = df_predict[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(self.tm_step)
        df_history_y = df_predict[['ds', 'yhat']][: - (self.tm_step + self.ahead)]

        return df_predict_y, df_history_y

 

(三)其他尝试

添加季节性组件:

self.model.add_seasonality(name='sin', period=2 * np.pi / 7, fourier_order=1)

 

(四)模型调用示例

1. 网格寻参

# 初始化
prophet_predictor = ProphetPredictor(x_train=df_input,
                                     trg_st_dt=trg_st_dt, tm_step=3, his_st_dt=his_st_dt, his_en_dt=his_en_dt,
                                     cv_horizon='3 days', cv_period='3 days', cv_initial='135 days')

# 网格寻参
dts_search = datetime.now()
df_search = prophet_predictor.grid_search()
print("df_search:\n", df_search, '\n')
dte_search = datetime.now()
tm_search = round((dte_search - dts_search).seconds + (dte_search - dts_search).microseconds / (10 ** 6), 3)
print("grid search time:  {} s".format(tm_search), '\n')

# 训练
dts_train = datetime.now()
prophet_predictor.fit()
dte_train = datetime.now()
tm_train = round((dte_train - dts_train).seconds + (dte_train - dts_train).microseconds / (10 ** 6), 3)
print("train time:  {} s".format(tm_train), '\n')

# 预测
df_predict_y, df_history_y = prophet_predictor.predict()
print("df_predict_y:\n", df_predict_y, '\n')
print("df_history_y:\n", df_history_y, '\n')

2. 给定参数

# 参数设定
params = {
    "n_changepoints": 2,
    "changepoint_range": 0.7,
    "seasonality_mode": 'additive',
    "seasonality_prior_scale": 0.5,
    "changepoint_prior_scale": 10,
    "yearly_seasonality": False,
    "weekly_seasonality": True,
    "daily_seasonality": False
}

# 初始化
prophet_predictor = ProphetPredictor(x_train=df_input,
                                     trg_st_dt=trg_st_dt, tm_step=3, his_st_dt=his_st_dt, his_en_dt=his_en_dt,
                                     cv_horizon='3 days', cv_period='3 days', cv_initial='135 days',
                                     **params)

# 训练
dts_train = datetime.now()
prophet_predictor.fit()
dte_train = datetime.now()
tm_train = round((dte_train - dts_train).seconds + (dte_train - dts_train).microseconds / (10 ** 6), 3)
print("train time:  {} s".format(tm_train), '\n')

# 预测
df_predict_y, df_history_y = prophet_predictor.predict()
print("df_predict_y:\n", df_predict_y, '\n')
print("df_history_y:\n", df_history_y, '\n')

 

 

参考资料:

https://www.cnblogs.com/fulu/p/13329656.html

https://www.cnblogs.com/zhazhaacmer/p/13786940.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/151111.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • linux安装samba服务器_开启samba服务

    linux安装samba服务器_开启samba服务Centos7samba的简介:我们都知道windows上面有一个很方便的文件共享的功能,samba服务主要就是实现了linux平台上的文件共享功能,使得linux平台也能够和windows进行文件共享,但是使用linux搭建的文件共享服务器对于windows来说和平常windows和windows之间进行文件共享没有什么区别。因为samba服务与windows的文件共享差不多,所以它的作用范围和windows的文件共享一样,只能在其所在的局域网生效。samba的主要配置文件1、/e

    2022年9月2日
    5
  • 专业检索工具有哪些_生物教育专业

    专业检索工具有哪些_生物教育专业转载:http://www.jianshu.com/p/ae7c8513bb00我的一位朋友,用了10年的电脑。作为一名老网民,他的信息检索能力让我诧异。每次需要找点图片、网站、研究报告甚至小电影,他都需要花费很多时间,在各个论坛、网站里疲于奔波。因为他只会用百度!然而,世界上不仅仅只有一类搜索引擎。百度或者google虽然可以提供海量的信息,但是信息的甄选是一…

    2025年10月23日
    3
  • SRS软件需求规格说明书_SOR是什么文件

    SRS软件需求规格说明书_SOR是什么文件【摘要】随着信息时代科技的飞速发展,经济全球化已广为人知,英语作为全球最主要的语言之一,受到越来越多的人的喜爱,不仅为了增长知识,也为了能适应社会发展的需求。但是,学英语最重要的事首先是积累词汇,没有

    2022年8月2日
    4
  • list数组遍历时能不能使用remove()方法,要注意什么

    list数组遍历时能不能使用remove()方法,要注意什么list数组遍历时能不能使用remove()方法,要注意什么

    2022年4月23日
    68
  • 网络编程Socket之TCP之close/shutdown具体解释(续)

    网络编程Socket之TCP之close/shutdown具体解释(续)

    2021年12月9日
    61
  • MATLAB函数fir1「建议收藏」

    MATLAB函数fir1「建议收藏」fir1基于窗函数的fir滤波器设计;主要形式:b=fir1(n,Wn)b=fir1(n,Wn,ftype)b=fir1(___,window)b=fir1(___,scaleopt)系数的含义n—滤波器阶数。Wn—截止频率,0≤Wn≤1,Wn=1对应于采样频率的一半。当设计带通和带阻滤波器时,Wn=[W1W2],W1≤…

    2022年7月17日
    35

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号