升降压电路的工作原理

升降压电路的工作原理1.升压电路也叫自举电路,是利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高,有的电路升高的电压能达到数倍电源电压。开关直流升压电路(即所谓的boost或者step-up电路)原理,theboostconverter,或者叫step-upconverter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图如图所示假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来

大家好,又见面了,我是你们的朋友全栈君。

1.升压电路也叫自举电路,是利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高,有的电路升高的电压能达到数倍电源电压。

开关直流升压电路(即所谓的boost或者step-up电路)原理,the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图如图所示
在这里插入图片描述
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。

(1)充电过程
升压电路原理的充电过程,在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。
在这里插入图片描述
(2)放电过程
升压电路原理的放电过程。如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流 保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电, 电容两端电压升高,此时电压已经高于输入电压了,升压完毕。

在这里插入图片描述
升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电感量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

在这里插入图片描述
(3).DC-DC变换器的基本电路有升压变换器、降压变换器、升降压变换器三种。
降压变换器原理图如图1所示,当开关闭合时,加在电感两端的电压为(Vi-Vo),此时电感由电压(Vi-Vo)励磁,电感增加的磁通为:(Vi-Vo)*Ton。
当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo)*Toff。
当开关闭合与开关断开的状态达到平衡时,(Vi-Vo)*Ton=(Vo)*Toff,由于占空比D<1,所以Vi>Vo,实现降压功能。
在这里插入图片描述升压变换器原理图如图2所示,当开关闭合时,输入电压加在电感上,此时电感由电压(Vi)励磁,电感增加的磁通为:(Vi)*Ton。
当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo- Vi)*Toff。
当开关闭合与开关断开的状态达到平衡时,(Vi)*Ton=(Vo- Vi)*Toff,由于占空比D<1,所以Vi<Vo,实现升压功能。
在这里插入图片描述
升降压变换器、入出极性相反原理如图3, 当开关闭合时,此时电感由电压(Vi)励磁,电感增加的磁通为:(Vi)*Ton;当开关断开时,电感削磁,电感减少的磁通为:(Vo)*Toff。当开关闭合与开关断开的状态达到平衡时,增加的磁通等于减少的磁通,(Vi)*Ton=(Vo)*Toff,根据Ton比Toff值不同,可能Vi<Vo,也可能Vi>Vo。
在这里插入图片描述
(4).当开关S1闭合导通时,VA电压为高,Vin给电感L1充电,流过电感L1的电流逐渐增加,电流路径见上图绿色回路,电感充电波形见下图。
在这里插入图片描述
当开关S1断开时,Va为低电平,电感L1通过负载和二极管放电,电感L1的电流逐渐减小,电流路径见下图蓝色部分,电感放电波形见上图。
在这里插入图片描述
在这里插入图片描述
升压电路拓补结构
在这里插入图片描述

降压电路拓补结构
在这里插入图片描述

2.常见的几种升压电路

(1).1.5V升9V电源电路图如附图所示。该电路为间歇式振荡升压电路。BG1与L1、L2、C1等构成振荡器。BG1为振荡管,工作在开关状态。L1、C1为振荡反馈元件。L2为振荡储能绕组。为了方便,电路还设计了由BG3构成的自动电子开关。当BG3的基极没有负载时,也就没有基极电流,BG3、BG2、BG1均截止,整个电路停止工作,不消耗电源。因此,本电路不需设立单独的电源开关。

当A、B两点接上负载时,BG3导通,BG2也跟着导通,通过负载为BG1提供基极电流,BG1导通,能量从电源流入并储存在L2中。此时BG1集电极电压很低,D1截止,负载由C2残存电压供电。当BG1截止时,L2中电流不能突变,它将产生出较高的逆程电动势,经D1整流后输出。当输出电压高于D2的稳压值时,BG2的b、e结反偏而趋向于截止,BG1基极电流将会下降,迫使其振荡减弱,输出电压也随之下降从而将输出电压自动地控制在D2的稳压值附近。
在这里插入图片描述
(2).MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。

振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形。充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。与门的C输入端在振荡器对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平。当C和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。电流限制通过检测连接在VCC和5脚之间电阻上的压降来完成功能。当检测到电阻上的电压降接近超过300mV时,电流限制电路开始工作,这时通过CT管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。

在这里插入图片描述
MC34063引脚功能
1脚:开关管T1集电极引出端;
2脚:开关管T1发射极引出端;
3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;
4脚:电源地;
5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;
6脚:电源端;
7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;
8脚:驱动管T2集电极引出端;

MC34063升压电路MC34063组成的升压电路原理如下图,当芯片内开关管(T1)导通时,电源经取样电阻Rsc、电感L1、MC34063的1脚和2脚接地,此时电感L1开始存储能量,而由C0对负载提供能量。当T1断开时,电源和电感同时给负载和电容Co提供能量。电感在释放能量期间,由于其两端的电动势极性与电源极性相同,相当于两个电源串联,因而负载上得到的电压高于电源电压。开关管导通与关断的频率称为芯片的工作频率。只要此频率相对负载的时间常数足够高,负载上便可获得连续的直流电压。

在这里插入图片描述
MC34063升压电路:从5V升到12V
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/151341.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 签名设计一笔签步骤「建议收藏」

    签名设计一笔签步骤「建议收藏」首语:签名设计一笔签步骤,很多人都不会写艺术签名,其实,作为一个普通人,不会写是正常的,因为会设计的都是下过功夫的,今天就来给大家分享【签名设计一笔签步骤】,希望大家能够喜欢!签名设计一笔签步骤其实每个名字的签名步骤都是不一样的,特别是不一样的字都是有自己独特的写法的,所以,很难给大家都讲解了的,不过没关系,我找几个典型的来给大家设计做下示范,大家慢慢学习就行了。目录:1、设计签名工具的选择2、签名设计应该掌握的技巧方法3、视频演示4、具体的操作步骤5、注意事项正文:1、设计签名工具的

    2022年9月6日
    4
  • AndroidJNI 通过C++调用JAVA

    1. JNIEnv对象    对于本地函数   JNIEXPORT void JNICALL Java_video1_TestNative_sayHello(JNIEnv * env, jobject obj)   {        cout   }           JNIEnv类型代表Java环境。通过这个JNIEnv*指针,就可以对Java端的代码进行操作。如,创建Java类得对象,调用J

    2022年3月11日
    42
  • 2019 美赛 A题

    2019 美赛 A题(新)2019美赛A题思路详解(纯干货)https://blog.csdn.net/i_CodeBoy/article/details/866636282019MCMProblemA:GameofEcologyInthefictionaltelevisionseriesGameofThrones,basedontheseriesofepic…

    2022年4月30日
    267
  • 19种电压转换的电路设计方式

    19种电压转换的电路设计方式标准三端线性稳压器的压差通常是2.0-3.0V。要把5V可靠地转换为3.3V,就不能使用它们。压差为几百个毫伏的低压降(LowDropout,LDO)稳压器,是此类应用的理想选择。图1-1是基本LDO系统的框图,标注了相应的电流。从图中可以看出,LDO由四个主要部分组成:技巧一:使用LDO稳压器,5V向3.3V系统供电标准三端线性稳压器的压差通常是2.0-3.0V。要把5V可靠地转换为3.3V,就不能使用它们。压差为几百个毫伏的低压降(LowD…

    2022年6月2日
    36
  • 硬盘的主分区和逻辑分区有什么区别_移动硬盘要不要分区

    硬盘的主分区和逻辑分区有什么区别_移动硬盘要不要分区硬盘分区有三种,主磁盘分区、扩展磁盘分区、逻辑分区。一个硬盘可以有一个主分区,一个扩展分区,也可以只有一个主分区没有扩展分区。逻辑分区可以若干。主分区是硬盘的启动分区,他是独立的,也是硬盘的第一个分区,正常分的话就是C驱。分出主分区后,其余的部分可以分成扩展分区,一般是剩下的部分全部分成扩展分区,也可以不全分,那剩的部分就浪费了。但扩展分区是不能直接用的,他是以逻辑分区的方式来使用的,所以说扩展分…

    2022年8月11日
    35
  • vs的安装包_vs2019制作安装包

    vs的安装包_vs2019制作安装包VS安装包注册com组件VS安装包注册com组件1.把你的com组件加入到打包程序。 2.在打包程序中找到该com组件,点击属性。在属性中有Register项,把值选择为vsdrfCOM即可。

    2022年8月22日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号