python猪脸识别_JD竞赛,猪脸识别

python猪脸识别_JD竞赛,猪脸识别pig_faceThisrepositoryisusedtosavethecodeforacompetition1.运行环境Ubuntu16.04python2.7.12cuda8.0cudnn6.0tensorflow1.3.0GPU4*TITANXP2.从视频中截取出猪:(1)为了排除背景数据对模型的影响,我们使用yolo-9000算法提取出视频中每一…

大家好,又见面了,我是你们的朋友全栈君。

pig_face

This repository is used to save the code for a competition

1. 运行环境

Ubuntu 16.04 python 2.7.12 cuda8.0 cudnn6.0 tensorflow 1.3.0

GPU 4*TITAN XP

2. 从视频中截取出猪:

(1)为了排除背景数据对模型的影响,我们使用yolo-9000算法提取出视频中每一帧的猪,代码来源于https://github.com/philipperemy/yolo-9000. 我们对其代码做了修改,将yolo解压包的代码解压后覆盖 darknet/src下同名文件即可

(2)经观察后发现,虽然yolo-9000对猪的识别不一定会归于hog类,但是基本上所有的框都会以视频中的猪为主体,因此在取框的时候,我们不以hog类的框为输出图像,而是以置信度为参考标准。

(3)我们保留所有置信度大于0.1的窗口

(4)每个视频大约能得到一万多张ROI图片,我们按大小排序,选取大约前4000张图片,并剔除不相关的物体图片以及背景干扰较大的图片(比如没有框到猪身上,或者只框了极小部分的猪),将其作为训练集和验证集。

(5)最后得到94677张图片

3. 预处理以及生成数据集

(1)运行raw_data/image_process.py, 将上一步得到的图片通过padding的方法变为正方形,保证在之后的步骤中resize操作不会扭曲图片

(2)运行raw_data/get_data_txt.py,对数据进行分割,并且将数据分割成50个储存文件,存在txt文件中,方便之后大数据的分步读取

(3)运行raw_data/create_h5_dataset.h5, 将数据生成h5文件,这一步之后会得到50个储存训练集的.h5文件,以及50个储存验证集.h5文件

4. 模型

(1)本模型基于细粒度识别模型bilinear cnn做的改进,参考源码来自于https://github.com/abhaydoke09/Bilinear-CNN-TensorFlow 参考论文 vis-www.cs.umass.edu/bcnn/docs/bcnn_iccv15.pdf Bilinear cnn是一个端到端的网络模型,该模型在CUB200-2011数据集上取得了弱监督细粒度分类模型的最好分类准确度。

(2)bilinear cnn把最后一层卷积核的输出做了外积(实际是做内积),以此达到融合不同特征的目的。

(3)我们队伍受resnet结构的启发,对bilinear cnn算法做了改进,将最后一层卷积核的输出也和前面其他层的卷积核的输出做内积,以此达到融合不同层次的特征的目的。再把得到的vector和原来的bilinear vector 融合。 我们增加了conv4_1、conv5_1对conv5_3的内积(只增加这两层是因为他们的filter numbers数量一致,pooling之后就可以做内积了,不需要加额外的卷积核) 我们的思想是:不同卷积层关注的特征不同,且对应感受视野的大小也不同(即有高低层次之分),在识别类似图像时,单独考虑特征是不够的,还需要考虑他们之间的空间关系。

(5)训练过程中加入实时的数据增强,包括旋转、随机改变对比度、随机改变亮度、随机crop. 训练时全连接层的drop out概率为0.5

4. 结构

(1)train/read_data.py 是读取数据的结构。实现大数据的分次加载。

(2)train/resvgg_model.py定义了网络结构,以及读取保存的权重的方法

(3)train/train_resvgg.py定义了训练的过程

(4)train/predict_resvgg.py 输出预测结果

5. 加载预训练模型,微调

(1)在读取resvgg模型时,令finetune=False,实现只训练最后的全连接层。并且调用load_initial_weights(sess),读取预训练的vgg的卷积层的参数

(2)训练设置 optimizer = tf.train.MomentumOptimizer(learning_rate=0.2, momentum=0.5).minimize(loss),训练次数50次

(3)将过程中得到的最优模型保存下来

6. 全网络训练

(1)在读取resvgg模型时,令finetune=True。 调用load_own_weight(sess , model_path),读取上一步得到的模型

(2)训练设置optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss), 训练200次

(3)将过程中得到的最优模型保存下来

7. 后期调整

实际训练过程中,只有第一次会在所有数据上训练满200次。在得到保存下来的模型后,之后的调参过程只取大约1/4的数据进行继续训练

8. 预测

(1)运行 predict_resvgg.py 预测结果

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/151874.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 税控盘开票助手Excel导入或ERP导入开票明细接口使用说明(使用手册)

    税控盘开票助手Excel导入或ERP导入开票明细接口使用说明(使用手册)税控盘开票助手使用说明(使用手册)写这遍文章的目的是方便以后个人使用,做个笔记记录。首先我来说一下它是做什么用的,它的主要作用是把用户的开票数据,Excel数据、ERP系统导入到税控盘开票软件中。解决企业开票明细多、开票数据量大、手工输入明细慢、开票赋码不方便等问题,通过使用开票助手可以提高开票人员工作效果,工作产能,减少手工输入带来的差错。可以使用的功能有:开票明细

    2022年5月27日
    241
  • 美化包软件_手机音量进度条 插件

    美化包软件_手机音量进度条 插件前言在我们进行自动化测试的时候,用例往往是成百上千,执行的时间是几十分钟或者是小时级别。有时,我们在调试那么多用例的时候,不知道执行到什么程度了,而pytest-sugar插件能很好解决我们的痛点。

    2022年7月31日
    4
  • Zookeeper 分布式锁 – 图解 – 秒懂

    Zookeeper 分布式锁 – 图解 – 秒懂疯狂创客圈Java分布式聊天室【亿级流量】实战系列之-26【博客园总入口】文章目录写在前面1.1.分布式锁简介1.1.1.图解:公平锁和可重入锁模型1.1.2.图解:zookeeper分布式锁的原理1.1.3.分布式锁的基本流程1.1.4.加锁的实现1.1.5.释放锁的实现1.1.1.分布式锁的应用场景写在最后疯狂创客圈亿级流量高并发IM实战系…

    2025年8月30日
    6
  • Sql Prompt安装图文教程「建议收藏」

    Sql Prompt安装图文教程「建议收藏」一、概念SQLPrompt是一款拥有SQL智能提示功能的SQLServer和VS插件。SQLPrompt能根据数据库的对象名称,语法和用户编写的代码片段自动进行检索,智能的为用户提供唯一合适的代码选择。自动脚本设置为用户提供了简单的代码易读性–这在开发者使用的是不大熟悉的脚本时尤其有用。SQLPrompt是立即可用的且能极大的提高生产率。…

    2022年7月14日
    98
  • BigDecimal的加减乘除及比较大小

    BigDecimal的加减乘除及比较大小BigDecimal的加减乘除及比较大小

    2022年4月23日
    62
  • 一些sql

    1、说明:创建数据库CREATE DATABASE database-name 2、说明:删除数据库drop database dbname3、说明:

    2021年12月25日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号