空间相关分析(三) 局部莫兰指数的理解与计算「建议收藏」

空间相关分析(三) 局部莫兰指数的理解与计算「建议收藏」        在上篇中,我们详细地阐述了全局莫兰指数(GlobalMoran’I)的含义以及具体的软件实操方法。今天,就来进一步地说明局部莫兰指数(LocalMoran’I)的含义与计算。        首先说明一下进行局部相关分析的必要性:在全局相关分析中,如果全局莫兰指数显著,我们即可认为在该区域上存在空间相关性。但是,我们还是不知道

大家好,又见面了,我是你们的朋友全栈君。

        在上篇中,我们详细地阐述了全局莫兰指数(Global Moran’I)的含义以及具体的软件实操方法。今天,就来进一步地说明局部莫兰指数(Local Moran’I)的含义与计算。

        首先说明一下进行局部相关分析的必要性:

  1. 在全局相关分析中,如果全局莫兰指数显著,我们即可认为在该区域上存在空间相关性。但是,我们还是不知道具体在哪儿些地方存在着空间聚集现象。这个时候就需要局部莫兰指数参与帮助说明。
  2. 即使全局莫兰指数为0,在局部上也不一定就没有空间聚集现象!(上篇博客中,学生的成绩的例子足以说明,在此不再赘述)

一、公式说明

        还是先从公式入手进行理解,相比全局莫兰指数,局部莫兰指数的计算方式要简洁许多,其计算方式如下:
I i = Z i S 2 ∑ j ≠ i n w i j Z j \mathit{I_{i}=\frac{Z_{i}}{S^2}\sum\limits_{j\not=i}^{n}w_{ij}Z_{j}} Ii=S2Zij=inwijZj
        其中, Z i = y i − y ˉ Z_{i}=y_{i}-\bar{y} Zi=yiyˉ Z j = y j − y ˉ Z_{j}=y_{j}-\bar{y} Zj=yjyˉ S 2 = 1 n ∑ ( y i − y ˉ ) 2 S^2=\frac{1}{n}\sum{(y_i-\bar{y})^2} S2=n1(yiyˉ)2 w i j w_{ij} wij为空间权重值, n n n为研究区域上所有地区的总数, I i I_{i} Ii则代表第 i {i} i个地区的局部莫兰指数。为了方便理解,这里的 y i ( j ) y_{i(j)} yi(j)还是代表第 i ( j ) i(j) i(j)地区的人均GDP,并将求和号展开( S 2 S^2 S2总是正的,相当于只是对整个式子进行标准化而已,故这里省略了):
I i = ( y i − y ˉ ) [ w i 1 ( y 1 − y ˉ ) + w i 2 ( y 2 − y ˉ ) + . . . w i ( i − 1 ) ( y i − 1 − y ˉ ) + w i ( i + 1 ) ( y i + 1 − y ˉ ) + . . . + w i n ( y n − y ˉ ) ] I_{i}=(y_{i}-\bar{y})[w_{i1}(y_{1}-\bar{y})+w_{i2}(y_{2}-\bar{y})+…w_{i(i-1)}(y_{i-1}-\bar{y})+w_{i(i+1)}(y_{i+1}-\bar{y})+…+w_{in}(y_{n}-\bar{y})] Ii=(yiyˉ)[wi1(y1yˉ)+wi2(y2yˉ)+...wi(i1)(yi1yˉ)+wi(i+1)(yi+1yˉ)+...+win(ynyˉ)]

        从上式不难看出, I i I_{i} Ii的正负取决于 y i − y ˉ y_{i}-\bar{y} yiyˉ和后面那一坨。前者可反映出第 i i i个地区的经济发展水平与整个区域的平均水平之间的高低情况,后者则反映出第 i i i个地区的周边地区与整个区域水平之间的高低情况。两个式子都有高低两种可能性,两两组合,共有四种情况。

以表格的方式呈现如下:

Z i Z_{i} Zi ∑ j ≠ i n w i j Z j \sum\limits_{j\not=i}^{n}w_{ij}Z_{j} j=inwijZj I i I_{i} Ii 含义
>0 >0 >0 第i个地区经济发展水平高,周边地区发展水平高
<0 <0 >0 第i个地区经济发展水平低,周边地区发展水平低
<0 >0 <0 第i个地区经济发展水平低,周边地区发展水平高
>0 <0 <0 第i个地区经济发展水平高,周边地区发展水平低

关于局部莫兰指数的范围问题在此进行说明:
大部分文献中指出的莫兰指数都是全局莫兰指数,它的范围是-1到1,而局部莫兰指数的范围是没有限制的!详细可参考王庆喜的《区域经济研究实用方法:基于Arcgis,Geoda和R运用》,如下图所示:
在这里插入图片描述

二、Moran’I散点图

当然,将上表内容以可视化的方式呈现,就得到了Moran’I散点图。以 Z i Z_{i} Zi为x轴, ∑ j ≠ i n w i j Z j \sum\limits_{j\not=i}^{n}w_{ij}Z_{j} j=inwijZj为y轴,将平面区域划分为四个象限,如下图所示:
在这里插入图片描述
这里还是以2018年人均GDP为基础数据,利用Geoda进行局部相关分析。操作过程如下:
导入空间权重矩阵——空间分析——单变量局部Moran’I分析
在这里插入图片描述
选择PGDP2018后,弹出以下对话框,这里我们先选择Moran散点图
在这里插入图片描述
细心地小伙伴可能会发现,下面这张图和全局莫兰指数得到的图是一样的!(emm.上面的那个moran’I 是全局莫兰指数,下面这些散点的横纵坐标的乘积就是各个区县的局部莫兰指数。相当于,一张图涵盖了两种指数的信息。
在这里插入图片描述
        简单对这张图分析一下:从局部相关的角度来看,第一、三象限的点明显多于第二、四象限的点,即表示”低—低”型和”高—高”型聚集的区县较”高—低”型、”低—高”型的区县更多。更简单地来说,即经济较低(高)的区县在空间上更易聚集。从差异的角度来看,若”低—低”型和”高—高”型区县数量多,即说明此时的空间差异较小。(类比,你胖,周围人也胖,是不是你就胖的不明显啦

顺便提一下,既然全局莫兰指数和局部莫兰指数都称莫兰指数,两者肯定是有关系的,数学公式表达如下:
I = ∑ i I i S 0 ∑ i Z i n I=\frac{\sum\limits_{i}I_{i}}{S_{0}\frac{\sum\limits_{i}{Z_i}}{n}} I=S0niZiiIi

更多详细的内容,有兴趣的小伙伴可参考:
Anselin L . Local Indicators of Spatial Association—LISA[J]. Geographical analysis, 1995, 27(2):93-115.

三、LISA聚集图

说到这儿,好像还没说局部莫兰指数怎么检验吧!其实,检验方法一样还是利用Z检验:
Z i = I i − E ( I i ) v a r ( I i ) Z_{i}=\frac{I_{i}-E(I_{i})}{\sqrt{var(I_{i})}} Zi=var(Ii)
IiE(Ii)

其实,上面那个moran’I散点图并没有对各个区县的局部莫兰指数进行检验,LISA聚集图在就在给定的显著性水平下,对于那些通过显著性检验的区县以地图的方式呈现出来,绘制的LISA聚集图如下:


空间相关分析(三) 局部莫兰指数的理解与计算「建议收藏」
空间相关分析(三) 局部莫兰指数的理解与计算「建议收藏」




左图为重庆市区县经济发展水平LISA聚集图,右图为行政区地图

Geoda就这一点不好,没法将区县名显示在LISA聚集图上。(有该需要的可以用Arcgis实现

从上图不难看出,重庆市经济发展水平较高的都聚集在渝西南地区,经济水平较低的大多聚集在渝东北地区,少部分聚集在渝东南地区,此外,”高-低”型和”低-高”型聚集区县并没有呈现出来。(若想更全面地展现经济水平聚集情况,光是人均GDP这一个指标肯定是远远不够的)

以上就是本次分享的全部内容~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/153038.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 求素数

    求素数求素数

    2022年4月24日
    49
  • TGZ文件解压_TGZ文件

    TGZ文件解压_TGZ文件tar打包之后有用gzip压缩的文件windows系统可以用WinRAR打开Linux系统用命令tarzxvffilename.tgz解压

    2025年6月20日
    3
  • char转换为数字_char字符转int

    char转换为数字_char字符转int刷题遇到一个考点是char型数字转int进行计算的问题。一看就会,一做就错,显然是在这里的认识薄弱了。将一番搜索的结果记录下来,以备再忘来打脸。char的定义参考:Java基本数据类型之char。首先,char跟int这两种类型可以直接互转:charch1=’a’;inti=ch1;charch2=(char)i;那么面对charin=‘2’需要转成int做计算,那么很…

    2022年9月27日
    4
  • js编写HTML通过document.cookie写入不了cookie的问题[通俗易懂]

    js编写HTML通过document.cookie写入不了cookie的问题[通俗易懂]js中通过document.cookie写入不了cookie的问题使用VScode编写HTML应用cookie进行存储,发现编写无法读取到cookie的内容,即未能实现cookie存储。作为新手问题,可以考虑这个原因:只有当用在服务器或者本地的服务器中的时候,才能使用这个方法写入cookie,所以VScode没有使用服务器方式?这个原因可以通过方案一尝试解决:打开VScode,点击左侧扩展,输入liveserver,点击安装即可;安装成功后再VS界面右下角可以看到相应提示

    2022年7月16日
    65
  • SpringBoot自定义starters

    SpringBoot自定义startersSpringBoot自定义starters1、简介2、如何自定义starter1、简介SpringBoot最强大的功能就是把我们常用的场景 抽象成一个个starter(场景启动器),我们通过引入springBoot为我们提供这些场景启动器,我们再进行少量的配置就能使用相应的功能。但是,SpringBoot不能包含所有的场景,经常需要我们自定义starter,来简化我们对springBoot的使用。2、如何自定义starter…

    2025年8月14日
    3
  • 多因子权重算法_SEO权重优化软件

    多因子权重算法_SEO权重优化软件from:https://www.ricequant.com/community/topic/4559/在多因子量化投资体系中,具有稳定的预期收益,可解释的经济驱动理论,与其他因子的低相关性是选择alpha因子的关键指标。本篇文章中,我们以此为因子选取标准,简单地构建了自己的因子库,总共包括八个大类因子,每个大类因子中包含四到五个子类细分因子。为了比较不同的权重优化方法的优劣,本文首先采取不同的方…

    2022年10月4日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号