python实现量化交易策略

python实现量化交易策略python实现量化交易策略1前言相信大家都听说过股票,很羡慕那些炒股大佬,觉得量化投资非常高深,本文教大家用python实现简单的量化交易策略。2构建策略炒股是一个概率游戏,强如巴菲特也没办法保证这只股票一定能涨。我们能做的是买入上涨概率高的股票,不碰那些下跌概率高的股票。在股票市场中有很多上市公司,有些公司是领导者,有些是追随者,比如白酒行业中贵州茅台(600519)、新能源概念中宁德时代(300750)等都是领导者。我们可以观察这些股票的走势,来判断同行业同概念中其他公司股票价格的走势。基

大家好,又见面了,我是你们的朋友全栈君。

python实现量化交易策略

1 前言

相信大家都听说过股票,很羡慕那些炒股大佬,觉得量化投资非常高深,本文教大家用python实现简单的量化交易策略。在这强调一下,本文仅供交流学习参考,不构成任何投资建议。炒股有风险,投资需谨慎。

2 构建策略

炒股是一个概率游戏,强如巴菲特也没办法保证这只股票一定能涨。我们能做的是买入上涨概率高的股票,不碰那些下跌概率高的股票。在股票市场中有很多上市公司,有些公司是领导者,有些是追随者,比如白酒行业中贵州茅台(600519)、新能源概念中宁德时代(300750)等都是领导者。我们可以观察这些股票的走势,来判断同行业同概念中其他公司股票价格的走势。基于这种思想,我们用相关性来构建策略。
本文用沪深300成分股构建股票池,样本期是2020年1月1日到2020年12月31日,数据来源于tushare数据库,官网链接:https://tushare.pro

import tushare as ts
import pandas as pd
import numpy as np
import copy

pro = ts.pro_api('你的token')
#1 获取沪深300成分股日线行情数据
def hqsj_hs():
    df1 = pro.index_weight(index_code='399300.SZ', trade_date='20201231')
    df=pd.DataFrame()
    for i in range(len(df1)):
        df2 = pro.daily(ts_code=df1.iloc[i,1], start_date='20200101', end_date='20201231')
        df=pd.concat([df,df2],axis=0)
    df.to_excel('股票数据.xlsx',index=False)
hqsj_hs()

这里得到了沪深300成分股的日线行情数据,需要手动将excel表按股票代码和交易日期升序。有些股票在样本期某天停牌,需要剔除该股票数据。这里用A股票当天收益率和其他股票昨天收益率计算相关性。

#2 计算相关性
def xgx():
    df=pd.read_excel('股票数据.xlsx',engine='openpyxl')
    result={ 
   }
    for i in range(len(df)):
        key=df.iloc[i,0]
        if result.get(key,False):
            result[key].append(df.iloc[i,-3])
        else:
            result[key] = [df.iloc[i,-3]]

    result1=copy.deepcopy(result)
    for i in result:
        if len(result[i])!=243:
            del result1[i]

    for i in result1:
        result1[i].append([result1[i][1:],result1[i][:-1]])

    result2={ 
   }
    for i in result1:
        aa = { 
   }
        now=pd.Series(result1[i][-1][0])
        for j in result1:
            pre=pd.Series(result1[j][-1][1])
            xgx=now.corr(pre)
            aa[j]=abs(xgx)
        result2[i]=aa
    #print(result2)

    result3={ 
   }
    for i in result2:
        result3[i]={ 
   max(zip(result2[i].values(), result2[i].keys()))[1]:max(zip(result2[i].values(), result2[i].keys()))[0]}

    xxx=[]
    for i in result3:
        for j in result3[i]:
            xxx.append(result3[i][j])
    b=sorted(xxx,reverse = True)[:1] #取相关性最大的

    result4={ 
   }
    for i in result3:
        for j in result3[i]:
            for x in b:
                if x==result3[i][j]:
                    result4[i]={ 
   j:x}
    print(result4)
    return result4

我们取相关性最大的股票组,得到结果是上海临港(600848)和民生银行(600016),相关性为0.4156。也就是说民生银行(600016)今天跌了,那么上海临港(600848)明天大概率要跌。我们可以在尾盘观察民生银行(600016),如果涨了,则买入上海临港(600848)。到这里就构建了我们的策略。

3 买股方案

前文根据2020年1月1日到2020年12月31日的数据构建策略,用于2021年1月1日到2021年3月31日交易。

#3 获取21年数据
def test_data():
    result4=xgx()
    ts_code=[]
    for i in result4:
        for j in result4[i]:
            ts_code.append(j)
    df = pd.DataFrame()
    for i in ts_code:
        df1 = pro.daily(ts_code=i, start_date='20210101', end_date='20210331')
        df = pd.concat([df, df1], axis=0)
    df.to_excel('股票数据1.xlsx', index=False)
test_data()

#4 买股方案
def mgfa():
    df=pd.read_excel('股票数据1.xlsx',engine='openpyxl')
    timeseries=df['trade_date'].tolist()
    timetime=list(set(timeseries))
    timetime1=sorted(timetime)
    result4=xgx()
    ts1=[] #昨天
    ts2=[] #今天
    for i in result4:
        ts2.append(i)
        for j in result4[i]:
            ts1.append(j)

    result1={ 
   }
    for i in range(len(df)):
        time=df.iloc[i,1]
        if result1.get(time,False):
            aa.append(df.iloc[i,-3])
        else:
            aa=[]
            aa.append(df.iloc[i,-3])
        result1[time]=aa

    result2={ 
   }
    for i in result1:
        if i!=20210331:
            aaa=[]
            for j in result1[i]:
                if j >0:
                    aaa.append(ts2[result1[i].index(j)])
            result2[timetime1[timetime1.index(i)+1]]=aaa
    print(result2)
    return result2
mgfa()

我们得到了2021年1月1日到2021年3月31日的买股方案,结果为2021年1月5日空仓,2021年1月6日空仓,2021年1月7日买入上海临港(600848)等等。

4 评估策略

上文我们得到了买股方案,最后需要进行回测,我们用收益率,夏普率,最大回撤等指标来评估策略的优劣性,收益率和夏普率越大越好,最大回撤越小越好。

#5 获取测试数据
def cssj():
    result4=xgx()
    ts_code=[]
    for i in result4:
        ts_code.append(i)
    df = pd.DataFrame()
    for i in ts_code:
        df1 = pro.daily(ts_code=i, start_date='20210101', end_date='20210331')
        df = pd.concat([df, df1], axis=0)
    df.to_excel('股票数据2.xlsx', index=False)
cssj()

#6 评估策略
def jssy():
    result2=mgfa()
    result4=xgx()
    df=pd.read_excel('股票数据2.xlsx',engine='openpyxl')
    zdf=[]
    for i in result2:
        if len(result2[i]) == 1:
            for j in result2[i]:
                for x in range(len(df)):
                    if df.iloc[x, 0] == j and df.iloc[x, 1] == i:
                        zdf.append(df.iloc[x, -3])
        else:
        	zdf.append(0)
    bbb=1
    for i in zdf:
        bbb=bbb*(1+i/100)
    bb=(bbb-1)*100
    print('总收益率/%:',bb)
    print('夏普率:', np.mean(zdf)/np.std(zdf,ddof=1))
    ccc=1
    hc=1
    max_hc=[]
    for i in zdf:
        kk=ccc*(1+i/100)
        if kk<ccc:
            hc=hc*(1+i/100)
        else:
            hc=(hc-1)*100
            max_hc.append(hc)
            hc=1
        ccc=copy.deepcopy(kk)
    print('最大回撤/%:',abs(min(max_hc)))
jssy()

得到结果是收益率5.858%,夏普率0.108,最大回撤2.26%。与沪深300指数相比,2021年1月1日到2021年3月31日沪深300的收益率是-3.13%,可以看出,策略收益领先沪深300指数。

5 总结

本文用相关性构建一个简单的交易策略,但还有许多工作没有完成,有兴趣的读者可以进行改善。比如调参,本文用1年数据来测试1个季度,读者们可以用2年数据测试1个季度,用1年数据测试1个月等等。或者用今天和前天数据计算相关性,或者用所有上市公司代替沪深300,或者取相关性最大的5组股票等等。一个好的策略是需要不断调参不断测试的。本文的策略虽然在2020年第一季度中收益率为5.858%,但没有考虑交易费用,实际收益大约4%。再次强调,本文仅供交流学习参考,不构成任何投资建议。炒股有风险,投资需谨慎。

完整代码

import tushare as ts
import pandas as pd
import numpy as np
import copy

pro = ts.pro_api('你的token')
#1 获取沪深300成分股日线行情数据
def hqsj_hs():
    df1 = pro.index_weight(index_code='399300.SZ', trade_date='20201231')
    df=pd.DataFrame()
    for i in range(len(df1)):
        df2 = pro.daily(ts_code=df1.iloc[i,1], start_date='20200101', end_date='20201231')
        df=pd.concat([df,df2],axis=0)
    df.to_excel('股票数据.xlsx',index=False)
hqsj_hs()
#股票数据.xlsx需要手动将excel表按股票代码和交易日期升序
#2 计算相关性
def xgx():
    df=pd.read_excel('股票数据.xlsx',engine='openpyxl')
    result={ 
   }
    for i in range(len(df)):
        key=df.iloc[i,0]
        if result.get(key,False):
            result[key].append(df.iloc[i,-3])
        else:
            result[key] = [df.iloc[i,-3]]

    result1=copy.deepcopy(result)
    for i in result:
        if len(result[i])!=243:
            del result1[i]

    for i in result1:
        result1[i].append([result1[i][1:],result1[i][:-1]])

    result2={ 
   }
    for i in result1:
        aa = { 
   }
        now=pd.Series(result1[i][-1][0])
        for j in result1:
            pre=pd.Series(result1[j][-1][1])
            xgx=now.corr(pre)
            aa[j]=abs(xgx)
        result2[i]=aa
    #print(result2)

    result3={ 
   }
    for i in result2:
        result3[i]={ 
   max(zip(result2[i].values(), result2[i].keys()))[1]:max(zip(result2[i].values(), result2[i].keys()))[0]}

    xxx=[]
    for i in result3:
        for j in result3[i]:
            xxx.append(result3[i][j])
    b=sorted(xxx,reverse = True)[:1] #取相关性最大的

    result4={ 
   }
    for i in result3:
        for j in result3[i]:
            for x in b:
                if x==result3[i][j]:
                    result4[i]={ 
   j:x}
    print(result4)
    return result4
#3 获取21年数据
def test_data():
    result4=xgx()
    ts_code=[]
    for i in result4:
        for j in result4[i]:
            ts_code.append(j)
    df = pd.DataFrame()
    for i in ts_code:
        df1 = pro.daily(ts_code=i, start_date='20210101', end_date='20210331')
        df = pd.concat([df, df1], axis=0)
    df.to_excel('股票数据1.xlsx', index=False)
test_data()

#4 买股方案
def mgfa():
    df=pd.read_excel('股票数据1.xlsx',engine='openpyxl')
    timeseries=df['trade_date'].tolist()
    timetime=list(set(timeseries))
    timetime1=sorted(timetime)
    result4=xgx()
    ts1=[] #昨天
    ts2=[] #今天
    for i in result4:
        ts2.append(i)
        for j in result4[i]:
            ts1.append(j)

    result1={ 
   }
    for i in range(len(df)):
        time=df.iloc[i,1]
        if result1.get(time,False):
            aa.append(df.iloc[i,-3])
        else:
            aa=[]
            aa.append(df.iloc[i,-3])
        result1[time]=aa

    result2={ 
   }
    for i in result1:
        if i!=20210331:
            aaa=[]
            for j in result1[i]:
                if j >0:
                    aaa.append(ts2[result1[i].index(j)])
            result2[timetime1[timetime1.index(i)+1]]=aaa
    print(result2)
    return result2
mgfa()
#5 获取测试数据
def cssj():
    result4=xgx()
    ts_code=[]
    for i in result4:
        ts_code.append(i)
    df = pd.DataFrame()
    for i in ts_code:
        df1 = pro.daily(ts_code=i, start_date='20210101', end_date='20210331')
        df = pd.concat([df, df1], axis=0)
    df.to_excel('股票数据2.xlsx', index=False)
cssj()

#6 评估策略
def jssy():
    result2=mgfa()
    result4=xgx()
    df=pd.read_excel('股票数据2.xlsx',engine='openpyxl')
    zdf=[]
    for i in result2:
        if len(result2[i]) == 1:
            for j in result2[i]:
                for x in range(len(df)):
                    if df.iloc[x, 0] == j and df.iloc[x, 1] == i:
                        zdf.append(df.iloc[x, -3])
        else:
            zdf.append(0)
    bbb=1
    for i in zdf:
        bbb=bbb*(1+i/100)
    bb=(bbb-1)*100
    print('总收益率/%:',bb)
    print('夏普率:', np.mean(zdf)/np.std(zdf,ddof=1))
    ccc=1
    hc=1
    max_hc=[]
    for i in zdf:
        kk=ccc*(1+i/100)
        if kk<ccc:
            hc=hc*(1+i/100)
        else:
            hc=(hc-1)*100
            max_hc.append(hc)
            hc=1
        ccc=copy.deepcopy(kk)
    print('最大回撤/%:',abs(min(max_hc)))
jssy()

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/153229.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • UltraEdit Crack,完全集成的编辑和数据管理工具

    UltraEdit Crack,完全集成的编辑和数据管理工具UltraEditCrack,完全集成的编辑和数据管理工具  UltraEditAllAccess订阅许可证(原IDMAllAccess订阅)为您提供世界领先的文件管理解决方案,从文件的创建到最终的存储、停用和删除,UltraEditAllAccess是一个集成的、端到端的数百万人信赖的解决方案。在UltraEdit或UEStudio中开发您的文本。使用UltraCompare查找和管理差异。使用UltraFinder快速查找丢失的文件或您需要的确切字符串,并使用

    2025年7月26日
    3
  • 华为交换机的基本配置命令_华为交换机配置手册

    华为交换机的基本配置命令_华为交换机配置手册华为交换机基础配置命令参考基础配置用户模式登陆设备后,直接进入用户模式,只能执行少量查看配置的命令;视图模式用户模式下,输入system-view进入视图模式,可执行设备全局配置的命令;局部配置模式视图模式下,输入局部配置命令,如interfaceGE1/0/0,进入GE1/0/0端口配置模式,此外局部配置模式有很多种,可根据不同需求进入vla…

    2022年4月19日
    60
  • WAR包补丁工具_修改war包配置文件

    WAR包补丁工具_修改war包配置文件简要:因目前处于运维历史悠久的WEB项目中,每次需求开发完成需要更打补丁文件,因此编写打补丁工具,以解决手动查找补丁文件的繁琐且重复操作。纯Java代码编写,使用Swing作为界面UI,原有代码只针对特殊使用场景,可以适当加以修改。适用:编译工具:EclipseLunaRelease(4.4.0)运行环境:JDK1.7代码:界面GUI部分:使用JSplitPane…

    2022年10月5日
    2
  • 原生HTML+CSS+JS制作自己的导航主页(前端大作业,源码+步骤详解)

    原生HTML+CSS+JS制作自己的导航主页(前端大作业,源码+步骤详解)文章目录前言插入背景一、头部1.导航栏2.优化导航栏3时间前言插入背景首先设置我们的背景。在body中插入背景即可。index.html<!doctypehtml><htmllang=”en”><head><metacharset=”UTF-8″><metaname=”Designer”content=”LiWei”><metaname=”Description”cont

    2022年7月22日
    19
  • Android面试题之Activity篇

    Android面试题之Activity篇Activity篇目录前言一、Activity1、什么是Activity?2、请描述一下Activity生命周期3、请描述一下Activity的四个状态4、两个Activity之间传递数据,除了intent,广播接收者,contentprovider还有啥?5、Android中的Context,Activity,Appliction有什么区别?6、Context是什么?7、如何保存Activity的状态?8、横竖屏切换时Activity的生命周期9、两个Activity

    2022年5月21日
    41
  • vue-router 报错:Navigation cancelled from“/…“ to “/…“ with a new navigation.

    vue-router 报错:Navigation cancelled from“/…“ to “/…“ with a new navigation.vue-router@3.0版本及以上回调形式已经改成promiseapi的形式了,返回的是一个promise,如果路由地址跳转相同,且没有捕获到错误,控制台始终会出现如图所示的警告(注:3.0以下版本则不会出现以下警告!!!,因路由回调问题…)*怎么解决呢?方案一:安装vue-router3.0以下版本:先卸载3.0以上版本然后再安装旧版本npminstallvue-router@2.8.0-S方案二:针对于路由跳转相同的地址添加catch捕获一下异常:this.$router.

    2022年7月26日
    124

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号