[日常训练]AekdyCoin的跳棋「建议收藏」

[日常训练]AekdyCoin的跳棋「建议收藏」AekdyCoin正在玩一个游戏,该游戏要用到两副牌和一个数轴和一个棋子。刚开始的时候棋子位于数轴的0位置。然后AekdyCoin交替的从两副牌中抽取一张牌,然后执行相应的动作。设这两幅牌为A

大家好,又见面了,我是你们的朋友全栈君。

Description

$AekdyCoin$正在玩一个游戏,该游戏要用到两副牌和一个数轴和一个棋子。

刚开始的时候棋子位于数轴的$0$位置。然后$AekdyCoin$交替的从两副牌中抽取一张牌,然后执行相应的动作。

设这两幅牌为$A,B$。每张牌上面有一个整数$x$,表示$AekdyCoin$可以前进的格数。从$A$中抽牌,则必须向左走$x$个单位;从$B$中抽牌则必须向右走$x$个单位。

现在要求第一次必须从$A$中抽牌,且必须轮流从两幅牌中抽,即抽完$A$后必须抽$B$,抽完$B$后必须抽$A$。

$AekdyCoin$在玩这个游戏的时候想到了一个问题,如果数轴是无限的,那么棋子有无可能到达任意的整数点呢?

Input

第一行有一个整数$T(1\;\leq\;T\;\leq\;5)$代表有$T$组数据。

每组数据的格式如下:

开头给出$A$牌中的牌数量$N$。然后接下去有$N$个数,代表$A$牌中各个牌上面标的整数。

而后给出$B$牌中的牌数量$M$。然后接下去有$M$个数,代表$B$牌中各个牌上面标的整数。

Output

对于每组测试点输出$YES$或者$NO$来代表题目给出的问题。

Sample Input

2

1 1

1 3

2 1 3

1 2

Sample Output

NO

YES

HINT

$1\;\leq\;N,M\;\leq\;10^5$;牌上面的整数在$[1,10^9]$之间。

Solution

跳的顺序为$ABABAB……$

  • 跳偶数步

构造序列$c=\{x|x=-a_i+b_j\}$,

则一个$AB$可以看成从$c$中选择一个元素来跳.

$c$能到达的任何一个数记为:$k=x_1c_1+x_2c_2+…+x_nc_n$,则$k$所能表示的最小正整数为$gcd(c)$,即所有非负$gcd(c)$的倍数都能到达.

然后$c$中必须有正数和负数才能到达数轴上所有$gcd(c)$的倍数的点.

  • 跳奇数步

因为跳偶数步只能遍历数轴上所有$gcd(c)$的倍数的点,所以$a_i\;mod\;gcd(c)$要满足取遍[1,gcd(c)),这样才能将数轴剩下的点都跳到.

$gcd(c)=gcd(a_i-b_k,a_j-b_k…)$.

$a_i-b_k-(a_j-b_k)=a_i-a_j$,整除$gcd(c)$.

这说明$a$关于模$gcd(c)$同余.

  • 结论

若$c$里面都是非正或者非负,则$NO$;

$gcd(c)=1$,则$YES$;

$gcd(c)=2$,且$a_i\;mod\;2=1$,则$YES$,否则$NO$;

若$gcd(c)>2$,则根据$a$关于$gcd(c)$同余可知,$a_i\;mod\;gcd(c)$不可能取遍[1,gcd(c)),所以$NO$.

  • 计算$gcd(c)$

$c_{i,j}=-a_i+b_j=(b_j-b_1)+(b_1-a_1)+(a_1-a_i)$.

只需计算$gcd(b_j-b_1,b_1-a_1,a_1-a_i)$.

#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 100005
using namespace std;
typedef long long ll;
int a[N],b[N],n,m,k,t;
bool flag;
inline int gcd(int x,int y){
    if(x<0) x=-x;
    if(y<0) y=-y;
    int r=x%y;
    while(r){
        x=y;y=r;r=x%y;
    }
    return y;
}
inline void Aireen(){
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        a[1]=0;
        for(int i=1;i<=n;++i)
            scanf("%d",&a[i]);
        scanf("%d",&m);
        for(int i=1;i<=m;++i)
            scanf("%d",&b[i]);
        sort(a+1,a+1+n);
        sort(b+1,b+1+m);
        if((ll)(b[1]-a[n])*(ll)(b[m]-a[1])>=0ll){
            puts("NO");continue;
        }
        if(b[1]!=a[1]) k=gcd(b[1]-a[n],b[1]-a[1]);
        else k=b[1]-a[n];
        for(int i=1;i<=n;++i)
            if(a[i]!=a[1]) k=gcd(k,a[i]-a[1]);
        for(int i=1;i<=m;++i)
            if(b[i]!=b[1]) k=gcd(k,b[i]-b[1]);
        if(k==1||(k==2&&(a[1]&1))){
            puts("YES");continue;
        }
        puts("NO");
    }
}
int main(){
    freopen("draughts.in","r",stdin);
    freopen("draughts.out","w",stdout);
    Aireen();
    fclose(stdin);
    fclose(stdout);
    return 0;
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/155010.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • idea 2022.01激活(JetBrains全家桶)2022.01.28

    (idea 2022.01激活)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~GTRP…

    2022年3月31日
    55
  • 克隆节点的方法_手机克隆phone

    克隆节点的方法_手机克隆phone<!DOCTYPEhtml><htmllang="en"><head><metacharset="UTF-8&quo

    2022年8月4日
    9
  • java课程设计(简易计算器)源代码 JAVA 源代码有解析 免费分享[通俗易懂]

    标题:java课程设计简易计算器源代码JAVA源代码有解析免费分享先言这是我挺久以前课程设计java写的计算器,只能实现基本的功能,我现在分享出来希望能帮助到别人。写得其实挺一般的,见谅见谅。有课程设计任务的学弟学妹也是写计算器的可以看看参考参考。源代码里我写有挺多解析的,能帮助理解。功能描述:参考Windows操作系统提供的计算器设计一个实用的计算器,要求除了具有普通的计算功能外,还具有保存计算过程的功能。①单击计算器上的数字按钮(0、1、2、3、4、5、6、7、8、9)可以设置参与计算

    2022年4月8日
    31
  • Java学习之spring MVC常用注解

    Java学习之springMVC常用注解0x00前言续上篇文章的内容继续来记录springmvc会常用到的一些注解。0x01常用注解RequestParam注解@Controller

    2021年12月12日
    41
  • flowable实战(八)flowable核心数据库表详细表字段说明

    flowable实战(八)flowable核心数据库表详细表字段说明数据模型设计清单 数据表分类 描述 ACT_GE_* 通用数据表 ACT_RE_* 流程定义存储表 ACT_ID_* 身份信息表 ACT_RU_* 运行时数据库表 ACT_HI_…

    2022年5月21日
    390
  • HashMap扩容流程[通俗易懂]

    HashMap扩容流程[通俗易懂]文章目录为什么扩容?什么时候扩容?如何扩容?今天在和同时讨论HashMap的时候,提到了扩容和冲哈希的事情,然后我发现大家都是一种半懂不懂的状态。于是回去做了一番功课,写下这篇文章。HashMap的扩容,又被很多人叫rehash、重哈希,我本人是很反对这个叫法的,事实上HashMap扩容的时候,Node中存储的Key的hash值并没有发生变化,只是Node的位置发生了变化。首先说为什么需要扩…

    2022年9月15日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号