VAE(Variational Autoencoder)的原理「建议收藏」

VAE(Variational Autoencoder)的原理「建议收藏」Kingma,DiederikP.,andMaxWelling."Auto-encodingvariationalbayes." arXivprepri

大家好,又见面了,我是你们的朋友全栈君。

Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013).

论文的理论推导见:https://zhuanlan.zhihu.com/p/25401928

中文翻译为:变分自动编码器

转自:http://kvfrans.com/variational-autoencoders-explained/

下面是VAE的直观解释,不需要太多的数学知识。 

什么是变分自动编码器?

为了理解VAE,我们首先从最简单的网络说起,然后再一步一步添加额外的部分。

 

一个描述神经网络的常见方法是近似一些我们想建模的函数。然而神经网络也可以被看做是携带信息的数据结构。

 

假如我们有一个带有解卷积层的网络,我们设置输入为值全为1的向量,输出为一张图像。然后,我们可以训练这个网络去减小重构图像和原始图像的平均平方误差。那么训练完后,这个图像的信息就被保留在了网络的参数中。

 

VAE(Variational Autoencoder)的原理「建议收藏」

 

现在,我们尝试使用更多的图片。这次我们用one-hot向量而不是全1向量。我们用[1, 0, 0, 0]代表猫,用[0, 1, 0, 0]代表狗。虽然这要没什么问题,但是我们最多只能储存4张图片。当然,我们也可以增加向量的长度和网络的参数,那么我们可以获得更多的图片。

 

但是,这样的向量很稀疏。为了解决这个问题,我们想使用实数值向量而不是0,1向量。我们可认为这种实数值向量是原图片的一种编码,这也就引出了编码/解码的概念。举个例子,[3.3, 4.5, 2.1, 9.8]代表猫,[3.4, 2.1, 6.7, 4.2] 代表狗。这个已知的初始向量可以作为我们的潜在变量。

 

如果像我上面一样,随机初始化一些向量去代表图片的编码,这不是一个很好的办法,我们更希望计算机能帮我们自动编码。在autoencoder模型中,我们加入一个编码器,它能帮我们把图片编码成向量。然后解码器能够把这些向量恢复成图片。

VAE(Variational Autoencoder)的原理「建议收藏」

 

我们现在获得了一个有点实际用处的网络了。而且我们现在能训练任意多的图片了。如果我们把这些图片的编码向量存在来,那以后我们就能通过这些编码向量来重构我们的图像。我们称之为标准自编码器。

 

但是,我们想建一个产生式模型,而不是一个只是储存图片的网络。现在我们还不能产生任何未知的东西,因为我们不能随意产生合理的潜在变量。因为合理的潜在变量都是编码器从原始图片中产生的。

 

这里有个简单的解决办法。我们可以对编码器添加约束,就是强迫它产生服从单位高斯分布的潜在变量。正式这种约束,把VAE和标准自编码器给区分开来了。

 

现在,产生新的图片也变得容易:我们只要从单位高斯分布中进行采样,然后把它传给解码器就可以了。

 

事实上,我们还需要在重构图片的精确度和单位高斯分布的拟合度上进行权衡。

 

我们可以让网络自己去决定这种权衡。对于我们的损失函数,我们可以把这两方面进行加和。一方面,是图片的重构误差,我们可以用平均平方误差来度量,另一方面。我们可以用KL散度(KL散度介绍)来度量我们潜在变量的分布和单位高斯分布的差异。

 

VAE(Variational Autoencoder)的原理「建议收藏」

 

为了优化KL散度,我们需要应用一个简单的参数重构技巧:不像标准自编码器那样产生实数值向量,VAE的编码器会产生两个向量:一个是均值向量,一个是标准差向量。

 

VAE(Variational Autoencoder)的原理「建议收藏」

 

我们可以这样来计算KL散度:

# z_mean and z_stddev are two vectors generated by encoder network

latent_loss = 0.5 * tf.reduce_sum(tf.square(z_mean) + tf.square(z_stddev) – tf.log(tf.square(z_stddev)) – 1,1)

 

当我们计算解码器的loss时,我们就可以从标准差向量中采样,然后加到我们的均值向量上,就得到了编码去需要的潜在变量。

 

VAE(Variational Autoencoder)的原理「建议收藏」

 

VAE除了能让我们能够自己产生随机的潜在变量,这种约束也能提高网络的产生图片的能力。

 

为了更加形象,我们可以认为潜在变量是一种数据的转换。

 

我们假设我们有一堆实数在区间[0, 10]上,每个实数对应一个物体名字。比如,5.43对应着苹果,5.44对应着香蕉。当有个人给你个5.43,你就知道这是代表着苹果。我们能用这种方法够编码无穷多的物体,因为[0, 10]之间的实数有无穷多个。

 

但是,如果某人给你一个实数的时候其实是加了高斯噪声的呢?比如你接受到了5.43,原始的数值可能是 [4.4 ~ 6.4]之间的任意一个数,真实值可能是5.44(香蕉)。

 

如果给的方差越大,那么这个平均值向量所携带的可用信息就越少。

 

现在,我们可以把这种逻辑用在编码器和解码器上。编码越有效,那么标准差向量就越能趋近于标准高斯分布的单位标准差。

 

这种约束迫使编码器更加高效,并能够产生信息丰富的潜在变量。这也提高了产生图片的性能。而且我们的潜变量不仅可以随机产生,也能从未经过训练的图片输入编码器后产生。

 

VAE的效果:

我做了一些小实验来测试VAE在MNIST手写数字数据集上的表现:

 VAE(Variational Autoencoder)的原理「建议收藏」

这里有一些使用VAE好处,就是我们可以通过编码解码的步骤,直接比较重建图片和原始图片的差异,但是GAN做不到。

 

另外,VAE的一个劣势就是没有使用对抗网络,所以会更趋向于产生模糊的图片。

 

这里也有一些结合VAE和GAN的工作:使用基本的VAE框架,但是用对抗网络去训练解码器。更多细节参考:https://arxiv.org/pdf/1512.09300.pdf 和http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

 

你可以从这里获得一些这篇博客的代码:https://github.com/kvfrans/variational-autoencoder 和一个整理好的版本: https://jmetzen.github.io/2015-11-27/vae.html

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/155649.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java权限管理面试_java shiro面试题

    java权限管理面试_java shiro面试题1、简单介绍一下Shiro框架?ApacheShiro是Java的一个安全框架。使用Shiro可以非常容易的开发出足够好的应用。其不仅可以用在JavaSE环境,也可以用在JavaEE环境。Shiro可以帮助我们完成功能:认证、授权、加密、会话管理、与Web集成、缓存等。三个核心组件:Subject,SecurityManager和Realms。●Subject:即“当前操作用户”。但是在Shi…

    2022年10月14日
    5
  • 关闭对话框,OnClose和OnCancel

    关闭对话框,OnClose和OnCancel

    2021年12月4日
    49
  • 动画插件–AnimateCSS

    动画插件–AnimateCSS1.什么是Animate.css?其实swiper-animate就是参考Animate.css演变出来的一个插件, Animate.css和swiper-animate一样都是用于快速添加动画的, 所以会用swiper-animate就会用Animate.css2.Animate.css的使用:引入animate.css的文件 给需要执行动画的元素添加类名3.示例animated这个类名是animated.css的基类,但凡需要通过animated.css来添加动画,都需

    2022年7月27日
    16
  • unity和solidarity的区别_交互分配法对内分配

    unity和solidarity的区别_交互分配法对内分配Unity调用so文件中的方法,配合一个简单的实例,简单的介绍了Unity端是如何调用so文件的。该文是系列文章,前面两篇对so基本概述和如何在AndroidStudio中生成so文件做了一个介绍,想了解的可以去参考下!

    2022年9月19日
    6
  • Matlab读取txt文件中的数据(使用textread函数)[通俗易懂]

    Matlab读取txt文件中的数据(使用textread函数)[通俗易懂]在使用Matlab处理数据时,我们经常需要读取txt文档,可以使用Matlab中强大的textread函数。它的基本语法是:[A,B,C,…]=textread(filename,format)[A,B,C,…]=textread(filename,format,N)其中filename就是文件名,format就是要读取的格式,A,B,C就是从文件中读取到的数据。中括号里面变量的…

    2025年9月22日
    4
  • webstorm激活码最新2021(JetBrains全家桶)

    (webstorm激活码最新2021)本文适用于JetBrains家族所有ide,包括IntelliJidea,phpstorm,webstorm,pycharm,datagrip等。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~7…

    2022年3月26日
    108

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号