python教程:用简单的Python编写Web应用程序

python教程:用简单的Python编写Web应用程序python现在已经成为很多程序员关注的编程语言之一,很多程序员也都开始弄python编程,并且很多时候都会用自己的操作来选择,而现在不管是程序员还是少儿编程,都会有python这门课,今天就和大家分

大家好,又见面了,我是你们的朋友全栈君。

python现在已经成为很多程序员关注的编程语言之一,很多程序员也都开始弄python编程,并且很多时候都会用自己的操作来选择,而现在不管是程序员还是少儿编程,都会有python这门课,今天就和大家分享一下。

1.jpeg

  安装

  安装步骤跟运行指令一样简单:

  pip install streamlit

  查看是否安装成功时只需运行:

  streamlit hello

  屏幕上应该显示的是:

2.jpg

  可以在浏览器中访问本地URL:localhost:8501,来查看执行中的Streamlit应用程序。开发人员那里也有许多很棒的样本可供尝试。

3.jpg

  Streamlit“你好,世界”

  Streamlit旨在通过简单的Python代码实现简单的程序开发。

  那就设计一款简单的应用程序,看看它是否真的像它说的那样。

  从Streamlit的名为“hello,world”的程序入手,这个程序并不复杂。只需要复制粘贴下面这个代码到“helloworld.py”的文件夹中即可。

  import streamlit as st

  x=st.slider(‘x’)

  st.write(x,’squared is’,x*x)

  然后到最后运行阶段时:

  streamlit run helloworld.py

  看吧,浏览器连接到localhost:8501,就可以看到执行中的程序,滑动鼠标就可以得到结果。

  简单的滑块插件应用程序

4.jpg

 

  操作非常简单。在构建上图应用程序时,用到了Streamlit的两个特性:

  st.slider插件——滑动改变Web应用程序的输出内容。

  以及通用的st.write指令。笔者对于它能从图标、数据框和简单的文本中编写任何东西感到惊讶。后面会有详细介绍。

  敲黑板:大家要记住每次改变插件值时,整个应用程序都会由上至下运行。

  Streamlit插件

  插件提供了控制应用程序的方法,阅读了解插件的最佳选择就是API参考文档,不过笔者这里也会讲解一些插件,它们都是用户在操作后期会用的最主要的插件。

  1.滑块

  streamlit.slider(label,min_value=None,max_value=None,value=None,step=None,format=None)

  在上文已经目睹了st.slider的执行过程,它可以结合min_value、max_value使用,用于进一步得到一定范围内的输入内容。

  2.文本输入

  获取用户输入最简单的方式是输入URL或一些用于分析情绪的文本内容,需要的只是一个用来命名文本框的标签。

  import streamlit as st

  url=st.text_input(‘Enter URL’)

  st.write(‘The Entered URL is’,url)

  看到的程序将是这样:

  简单的text_input widget程序

5.jpg

  贴士:可以只改变helloworld.py文件然后刷新页面。笔者的做法是打开该文件然后在文本编辑器中改动,再一点一点查看变动的地方。

  3.复选框

  复选框的一个功能就是隐藏或显示/隐藏程序中的特定区域,另一个用途是设置函数的布尔参数值。st.checkbox()需要一个参数,即插件标签。在该应用程序中,复选框会用来切换条件语句。

  import streamlit as st

  import pandas as pd

  import numpy as np

  df=pd.read_csv(“football_data.csv”)

  if st.checkbox(‘Show dataframe’):

  st.write(df)

  简单的复选框插件应用程序

6.jpg

  4.下拉框插件

  通过st.selectbox可以在一系列选项或列表中进行选择。常见的用法是将其作为下拉项然后从名单中挑选值。

  import streamlit as st

  import pandas as pd

  import numpy as np

  df=pd.read_csv(“football_data.csv”)option=st.selectbox(

  ’Which Club do you like best?’,

  df[‘Club’].unique())

  ’You selected:’,option

  简单的下拉框/复选框插件程序

7.jpg

  5.多选插件

  也可以用下拉框内的多个值。这里讲的是使用st.multiselect在变量选选中获取多个值作为列表。

  import streamlit as st

  import pandas as pd

  import numpy as np

  df=pd.read_csv(“football_data.csv”)

  options=st.multiselect(

  ’What are your favorite clubs?’,df[‘Club’].unique())

  st.write(‘You selected:’,options)

  简单的下拉框插件应用程序

8.jpg

  一步步创建应用程序

  重要插件了解的也差不多了,现在马上要用多个插件创建应用程序。

  从简单的步骤入门,尝试使用Streamlit对足球数据进行可视化。有了上面那些插件,这个步骤执行起来会容易很多。

  import streamlit as st

  import pandas as pd

  import numpy as np

  df=pd.read_csv(“football_data.csv”)

  clubs=st.multiselect(‘Show Player for clubs?’,df[‘Club’].unique())

  nationalities=st.multiselect(‘Show Player from Nationalities?’,df[‘Nationality’].unique())

  #Filter dataframe

  new_df=df[(df[‘Club’].isin(clubs))&(df[‘Nationality’].isin(nationalities))]

  #write dataframe to screen

  st.write(new_df)

  简单的应用程序会是这样的:

9.jpg

  同时使用多个插件

  这一点也不难,但目前看起来似乎太基础了。是否可以考虑加入一些图表呢?

  Streamlit当前支持许多用于绘图的库,其中就有Plotly,Bokeh,Matplotlib,Altair和Vega图表。Plotly Express也可以,只不过没有详细说明。也存在一些内嵌式图表,相当于Streamlit“自带”的,比如st.line_chart和st.area_chart.

  此时会用到plotly_express,下面是设计程序会用到的代码。该过程只会调用Streamlit四次。剩下的都是一些简单的Python代码操作。

  import streamlit as st

  import pandas as pd

  import numpy as np

  import plotly_express as px

  df=pd.read_csv(“football_data.csv”)

  clubs=st.multiselect(‘Show Player for clubs?’,df[‘Club’].unique())

  nationalities=st.multiselect(‘Show Player from Nationalities?’,df[‘Nationality’].unique())new_df=df[(df[‘Club’].isin(clubs))&(df[‘Nationality’].isin(nationalities))]

  st.write(new_df)

  #create figure using plotly express

  fig=px.scatter(new_df,x=’Overall’,y=’Age’,color=’Name’)

  #Plot!

  st.plotly_chart(fig)

  添加图表

10.jpg

  改进

  在本文一开始有提到插件每次发生变动时,整个应用程序就会由上至下地运行。其实并不可行,因为创建的应用程序会保留下深度学习模型或复杂的机器学习模型。接下来在讲Streamlit的缓存时会向读者阐释这一点。

  1.缓存

  在这个简单的程序里,但凡值有所变动时,数据科学家们就会反复浏览数据框。它比较适用于用户手中的小规模数据,至于大规模或需要进行很多步处理的数据,它是不予理睬的。接下来在Streamlit中通过st.cache装饰器函数体验缓存的功能吧。

  import streamlit as st

  import pandas as pd

  import numpy as np

  import plotly_express as px

  df=st.cache(pd.read_csv)(“football_data.csv”)

  或者是复杂一些、时间耗费久一些的函数,只需要运行一次,此时可以用:

   st.cache

  def complex_func(a,b):

  DO SOMETHING COMPLEX

  #Won’t run again and again.

  complex_func(a,b)

  用Streamlit的缓存装饰器标记函数时,无论这个函数是否执行,都会检查输入的参数值(由该函数处理的)。

  如果Streamlit之前没有处理过这些数据,它会调用函数并将运算结果存到本地缓存中。

  下次再调用函数时,倘若还是这些参数,Streamlit就会完全跳过这一块的函数执行,直接用缓存器里的结果数据。

  2.侧边栏

  为了根据个人的倾向需求使界面更加简洁,用户可能会想着把插件移动到侧边栏内,比如像Rshiny仪表盘。这非常简单,只需在插件代码中添加st.sidebar即可。

  import streamlit as st

  import pandas as pd

  import numpy as np

  import plotly_express as px

  df=st.cache(pd.read_csv)(“football_data.csv”)

  clubs=st.sidebar.multiselect(‘Show Player for clubs?’,df[‘Club’].unique())

  nationalities=st.sidebar.multiselect(‘Show Player from Nationalities?’,df[‘Nationality’].unique())

  new_df=df[(df[‘Club’].isin(clubs))&(df[‘Nationality’].isin(nationalities))]

  st.write(new_df)

  #Create distplot with custom bin_size

  fig=px.scatter(new_df,x=’Overall’,y=’Age’,color=’Name’)

  #Plot!

  st.plotly_chart(fig)

  将插件移动到侧边栏内

  3.Markdown标记语言可以吗?

  笔者特别喜欢在Markdown里编辑文字,因为发现相比HTML,它少了那些繁琐的操作,而且更能胜任数据科学的任务。所以读者也能在Streamlit程序中应用Markdown吗?

  答案是可以。而且是有迹可循的。在笔者看来,最合适的就是调用Magic指令。通过该指令,用户做标记语言就会像写评论一样简单。用户也可以使用指令st.markdown。

  import streamlit as st

  import pandas as pd

  import numpy as np

  import plotly_express as px”’

  #Club and Nationality App

  This very simple webapp allows you to select and visualize players from certain clubs and certain nationalities.

  ”’

  df=st.cache(pd.read_csv)(“football_data.csv”)

  clubs=st.sidebar.multiselect(‘Show Player for clubs?’,df[‘Club’].unique())

  nationalities=st.sidebar.multiselect(‘Show Player from Nationalities?’,df[‘Nationality’].unique())new_df=df[(df[‘Club’].isin(clubs))&(df[‘Nationality’].isin(nationalities))]

  st.write(new_df)

  #Create distplot with custom bin_size

  fig=px.scatter(new_df,x=’Overall’,y=’Age’,color=’Name’)

  ”’

  ###Here is a simple chart between player age and overall

  ”’

  st.plotly_chart(fig)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/156092.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • LuaFileSystem学习心得

    LuaFileSystem学习心得

    2022年2月4日
    46
  • isNotEmpty 与 isNotBlank的区别「建议收藏」

    isNotEmpty 与 isNotBlank的区别「建议收藏」转自:http://www.zhenhua.org/article.asp?id=625 isNotEmpty将空格也作为参数,isNotBlank则排除空格参数参考QuoteStringUtils方法的操作对象是java.lang.String类型的对象,是JDK提供的String类型操作方法的补充,并且是null安全的(即如果输入参数String为null则

    2022年10月7日
    4
  • 查看linux执行的命令记录_history命令详解

    查看linux执行的命令记录_history命令详解前言我们每次敲打linux命令的时候,有时候想用之前用过的命令,一般情况下,我们都会按↑↓箭头来寻找历史的命令记录,那如果我想用1天前执行的某条命令,难道还要按↑100次?显示这样是不现实的,我们可

    2022年7月30日
    5
  • volatile关键字作用

    volatile关键字作用一、作用简述内存可见性:保证变量的可见性:当一个被volatile关键字修饰的变量被一个线程修改的时候,其他线程可以立刻得到修改之后的结果。当一个线程向被volatile关键字修饰的变量写入数据的时候,虚拟机会强制它被值刷新到主内存中。当一个线程用到被volatile关键字修饰的值的时候,虚拟机会强制要求它从主内存中读取。 屏蔽JVM指令重排序(防止JVM编译源码生成class时使用重排序)…

    2022年6月1日
    36
  • 【Java】爬虫,看完还爬不下来打我电话[通俗易懂]

    前言防砸声明:此文仅仅能保证入门,不保证商业生产。最终实现效果:爬虫简介:引用钱洋博士课程的部分内容(有删改):网络爬虫技术,有效的获取网络数据资源的重要方式。简单的理解,比如您对百度贴吧的一个帖子内容特别感兴趣,而帖子的回复却有1000多页,这时采用逐条复制的方法便不可行。而采用网络爬虫便可以很轻松地采集到该帖子下的所有内容。网络爬虫的作用,我总结为以下几点:舆情分析:企业或…

    2022年4月13日
    98
  • PKI体系_基于PKI体系的认证方式进行论述

    PKI体系_基于PKI体系的认证方式进行论述在非对称加密中,公钥可以通过证书机制来进行保护,但证书的生成、分发、撤销等过程并没有在X.509规范中进行定义。实际上,如何安全地管理和分发证书可以遵循PKI(PublicKeyInfrastructure)体系来完成。PKI体系核心解决的是证书生命周期相关的认证和管理问题,在现代密码学应用领域处于十分基础和重要的地位。需要注意,PKI是建立在公私钥基础上实现安全可靠传递…

    2022年8月22日
    9

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号