linux platform driver register

linux platform driver registerPlatformDevicesandDrivers~~~~~~~~~~~~~~~~~~~~~~~~~~~~Seeforthedrivermodelinterfacetotheplatformbus: platform_device,andplatform_driver. Thispseudo-busisusedtoconnectdevice

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
Platform Devices and Drivers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See <linux/platform_device.h> for the driver model interface to the
platform bus:  platform_device, and platform_driver.  This pseudo-bus
is used to connect devices on busses with minimal infrastructure,
like those used to integrate peripherals on many system-on-chip
processors, or some “legacy” PC interconnects; as opposed to large
formally specified ones like PCI or USB.

Platform devices
~~~~~~~~~~~~~~~~
Platform devices are devices that typically appear as autonomous
entities in the system. This includes legacy port-based devices and
host bridges to peripheral buses, and most controllers integrated
into system-on-chip platforms.  What they usually have in common
is direct addressing from a CPU bus.  Rarely, a platform_device will
be connected through a segment of some other kind of bus; but its
registers will still be directly addressable.

Platform devices are given a name, used in driver binding, and a
list of resources such as addresses and IRQs.

struct platform_device {
    const char    *name;
    u32        id;
    struct device    dev;
    u32        num_resources;
    struct resource    *resource;
};

Platform drivers

~~~~~~~~~~~~~~~~

Platform drivers follow the standard driver model convention, where

discovery/enumeration is handled outside the drivers, and drivers

provide probe() and remove() methods.  They support power management

and shutdown notifications using the standard conventions.

struct platform_driver {
    int (*probe)(struct platform_device *);
    int (*remove)(struct platform_device *);
    void (*shutdown)(struct platform_device *);
    int (*suspend)(struct platform_device *, pm_message_t state);
    int (*suspend_late)(struct platform_device *, pm_message_t state);
    int (*resume_early)(struct platform_device *);
    int (*resume)(struct platform_device *);
    struct device_driver driver;
};

Note that probe() should general verify that the specified device hardware

actually exists; sometimes platform setup code can’t be sure.  The probing

can use device resources, including clocks, and device platform_data.

Platform drivers register themselves the normal way:

    int platform_driver_register(struct platform_driver *drv);

Or, in common situations where the device is known not to be hot-pluggable,

the probe() routine can live in an init section to reduce the driver’s

runtime memory footprint:

    int platform_driver_probe(struct platform_driver *drv,

              int (*probe)(struct platform_device *))

Device Enumeration

~~~~~~~~~~~~~~~~~~

As a rule, platform specific (and often board-specific) setup code will

register platform devices:

    int platform_device_register(struct platform_device *pdev);

    int platform_add_devices(struct platform_device **pdevs, int ndev);

The general rule is to register only those devices that actually exist,

but in some cases extra devices might be registered.  For example, a kernel

might be configured to work with an external network adapter that might not

be populated on all boards, or likewise to work with an integrated controller

that some boards might not hook up to any peripherals.

In some cases, boot firmware will export tables describing the devices

that are populated on a given board.   Without such tables, often the

only way for system setup code to set up the correct devices is to build

a kernel for a specific target board.  Such board-specific kernels are

common with embedded and custom systems development.

In many cases, the memory and IRQ resources associated with the platform

device are not enough to let the device’s driver work.  Board setup code

will often provide additional information using the device’s platform_data

field to hold additional information.

Embedded systems frequently need one or more clocks for platform devices,

which are normally kept off until they’re actively needed (to save power).

System setup also associates those clocks with the device, so that that

calls to clk_get(&pdev->dev, clock_name) return them as needed.

Legacy Drivers:  Device Probing

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Some drivers are not fully converted to the driver model, because they take

on a non-driver role:  the driver registers its platform device, rather than

leaving that for system infrastructure.  Such drivers can’t be hotplugged

or coldplugged, since those mechanisms require device creation to be in a

different system component than the driver.

The only “good” reason for this is to handle older system designs which, like

original IBM PCs, rely on error-prone “probe-the-hardware” models for hardware

configuration.  Newer systems have largely abandoned that model, in favor of

bus-level support for dynamic configuration (PCI, USB), or device tables

provided by the boot firmware (e.g. PNPACPI on x86).  There are too many

conflicting options about what might be where, and even educated guesses by

an operating system will be wrong often enough to make trouble.

This style of driver is discouraged.  If you’re updating such a driver,

please try to move the device enumeration to a more appropriate location,

outside the driver.  This will usually be cleanup, since such drivers

tend to already have “normal” modes, such as ones using device nodes that

were created by PNP or by platform device setup.

None the less, there are some APIs to support such legacy drivers.  Avoid

using these calls except with such hotplug-deficient drivers.

    struct platform_device *platform_device_alloc(

            const char *name, int id);

You can use platform_device_alloc() to dynamically allocate a device, which

you will then initialize with resources and platform_device_register().

A better solution is usually:

    struct platform_device *platform_device_register_simple(

            const char *name, int id,

            struct resource *res, unsigned int nres);

You can use platform_device_register_simple() as a one-step call to allocate

and register a device.

Device Naming and Driver Binding

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The platform_device.dev.bus_id is the canonical name for the devices.

It’s built from two components:

    * platform_device.name … which is also used to for driver matching.

    * platform_device.id … the device instance number, or else “-1”

      to indicate there’s only one.

These are concatenated, so name/id “serial”/0 indicates bus_id “serial.0”, and

“serial/3” indicates bus_id “serial.3”; both would use the platform_driver

named “serial”.  While “my_rtc”/-1 would be bus_id “my_rtc” (no instance id)

and use the platform_driver called “my_rtc”.

Driver binding is performed automatically by the driver core, invoking

driver probe() after finding a match between device and driver.  If the

probe() succeeds, the driver and device are bound as usual.  There are

three different ways to find such a match:

    – Whenever a device is registered, the drivers for that bus are

      checked for matches.  Platform devices should be registered very

      early during system boot.

    – When a driver is registered using platform_driver_register(), all

      unbound devices on that bus are checked for matches.  Drivers

      usually register later during booting, or by module loading.

    – Registering a driver using platform_driver_probe() works just like

      using platform_driver_register(), except that the driver won’t

      be probed later if another device registers.  (Which is OK, since

      this interface is only for use with non-hotpluggable devices.)

Early Platform Devices and Drivers

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The early platform interfaces provide platform data to platform device

drivers early on during the system boot. The code is built on top of the

early_param() command line parsing and can be executed very early on.

Example: “earlyprintk” class early serial console in 6 steps

1. Registering early platform device data

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The architecture code registers platform device data using the function

early_platform_add_devices(). In the case of early serial console this

should be hardware configuration for the serial port. Devices registered

at this point will later on be matched against early platform drivers.

2. Parsing kernel command line

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The architecture code calls parse_early_param() to parse the kernel

command line. This will execute all matching early_param() callbacks.

User specified early platform devices will be registered at this point.

For the early serial console case the user can specify port on the

kernel command line as “earlyprintk=serial.0” where “earlyprintk” is

the class string, “serial” is the name of the platform driver and

0 is the platform device id. If the id is -1 then the dot and the

id can be omitted.

3. Installing early platform drivers belonging to a certain class

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The architecture code may optionally force registration of all early

platform drivers belonging to a certain class using the function

early_platform_driver_register_all(). User specified devices from

step 2 have priority over these. This step is omitted by the serial

driver example since the early serial driver code should be disabled

unless the user has specified port on the kernel command line.

4. Early platform driver registration

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Compiled-in platform drivers making use of early_platform_init() are

automatically registered during step 2 or 3. The serial driver example

should use early_platform_init(“earlyprintk”, &platform_driver).

5. Probing of early platform drivers belonging to a certain class

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The architecture code calls early_platform_driver_probe() to match

registered early platform devices associated with a certain class with

registered early platform drivers. Matched devices will get probed().

This step can be executed at any point during the early boot. As soon

as possible may be good for the serial port case.

6. Inside the early platform driver probe()

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The driver code needs to take special care during early boot, especially

when it comes to memory allocation and interrupt registration. The code

in the probe() function can use is_early_platform_device() to check if

it is called at early platform device or at the regular platform device

time. The early serial driver performs register_console() at this point.

For further information, see <linux/platform_device.h>.

中文版:

http://wenku.baidu.com/view/ff17f319227916888486d7ca.html

platform_driver_register与of_register_platform_driver分析

转载:

http://www.360doc.com/content/13/0509/09/12277762_284056901.shtml

在ARM体系结构中常见的是platform_driver_register
在powerpc中是of_register_platform_driver
下面通过具体的代码来分析其区别
platform_driver_register在driver/base/platform.c中定义
int platform_driver_register(struct platform_driver *drv)
{

    drv->driver.bus = &platform_bus_type;
    if (drv->probe)
        drv->driver.probe = platform_drv_probe;
    if (drv->remove)
        drv->driver.remove = platform_drv_remove;
    if (drv->shutdown)
        drv->driver.shutdown = platform_drv_shutdown;

    return driver_register(&drv->driver);
}
EXPORT_SYMBOL_GPL(platform_driver_register);
——————————————————————————————————
而of_register_platform_driver在of_platform.c中定义
static inline int of_register_platform_driver(struct of_platform_driver *drv)
{

    return of_register_driver(drv, &of_platform_bus_type);
}
int of_register_driver()在driver/of/plateform.c中定义
int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
{

    drv->driver.bus = bus;

    /* register with core */
    return driver_register(&drv->driver);
}
而着最终都是调用的driver_register();
_____________________________________
这是由于二者结构获取硬件信息 的方式不同造成 的,在powerpc体系是通过dts
对比platform_driver和of_platform_driver
在include/linux/platform_device.h
struct platform_driver {

    int (*probe)(struct platform_device *);
    int (*remove)(struct platform_device *);
    void (*shutdown)(struct platform_device *);
    int (*suspend)(struct platform_device *, pm_message_t state);
    int (*resume)(struct platform_device *);
    struct device_driver driver;
    const struct platform_device_id *id_table;
};
在include/linux/of_platform_device.h
struct of_platform_driver
{

    int    (*probe)(struct of_device* dev,
             const struct of_device_id *match);
    int    (*remove)(struct of_device* dev);

    int    (*suspend)(struct of_device* dev, pm_message_t state);
    int    (*resume)(struct of_device* dev);
    int    (*shutdown)(struct of_device* dev);

    struct device_driver    driver;
};
#define    to_of_platform_driver(drv) \
    container_of(drv,struct of_platform_driver, driver)
of_device_id 和platform_device_id
可以看出 主要所区别在 of_device 和platform_device
***********************************************************
在arch/powerpc/include/asm/of_device.h定义了
/*
 * The of_device is a kind of “base class” that is a superset of
 * struct device for use by devices attached to an OF node and
 * probed using OF properties.
 */
struct of_device
{

    struct device        dev;        /* Generic device interface */
    struct pdev_archdata    archdata;
};

/*
 * Struct used for matching a device
 */
struct of_device_id
{

    char    name[32];
    char    type[32];
    char    compatible[128];  //dts中看到这个东东了哈。通过它的匹配获取硬件资源
#ifdef __KERNEL__
    void    *data;
#else
    kernel_ulong_t data;
#endif
};
——————————————————————————————————
在在include/linux/of_platform_device.h定义
struct platform_device {

    const char    * name;
    int        id;
    struct device    dev;//这个是通用的
    u32        num_resources;
    struct resource    * resource; //获取硬件资源

    const struct platform_device_id    *id_entry;

    /* arch specific additions */
    struct pdev_archdata    archdata;
};从上述定义的文件也可以发现powerpc 并不是一个通用的,和自己体系相关

struct platform_device_id {

    char name[PLATFORM_NAME_SIZE];
    kernel_ulong_t driver_data
            __attribute__((aligned(sizeof(kernel_ulong_t))));
};

*********************************
返回到我们的
int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
{

    drv->driver.bus = bus;

    /* register with core */
    return driver_register(&drv->driver);
}
bus 是从of_register_platform_driver中传入 of_platform_bus_type,是个全局变量在
arch/powerpc/kernel/of_platform.c中定义
struct bus_type of_platform_bus_type = {

       .uevent    = of_device_uevent,
};

of_device_uevent,在同上目录of_device.c定义
int of_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{

    struct of_device *ofdev;
    const char *compat;
    int seen = 0, cplen, sl;

    if (!dev)
        return -ENODEV;

    ofdev = to_of_device(dev);

    if (add_uevent_var(env, “OF_NAME=%s”, ofdev->dev.of_node->name))
        return -ENOMEM;

    if (add_uevent_var(env, “OF_TYPE=%s”, ofdev->dev.of_node->type))
        return -ENOMEM;

        /* Since the compatible field can contain pretty much anything
         * it’s not really legal to split it out with commas. We split it
         * up using a number of environment variables instead. */

    compat = of_get_property(ofdev->dev.of_node, “compatible”, &cplen);//根据compatible获取资源 具体看dts文件,在i2c学习中提过
    while (compat && *compat && cplen > 0) {

        if (add_uevent_var(env, “OF_COMPATIBLE_%d=%s”, seen, compat))
            return -ENOMEM;

        sl = strlen (compat) + 1;
        compat += sl;
        cplen -= sl;
        seen++;
    }

    if (add_uevent_var(env, “OF_COMPATIBLE_N=%d”, seen))
        return -ENOMEM;

    /* modalias is trickier, we add it in 2 steps */
    if (add_uevent_var(env, “MODALIAS=”))
        return -ENOMEM;
    sl = of_device_get_modalias(ofdev, &env->buf[env->buflen-1],
                    sizeof(env->buf) – env->buflen);
    if (sl >= (sizeof(env->buf) – env->buflen))
        return -ENOMEM;
    env->buflen += sl;

    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/158246.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 过滤器与拦截器详解图_过滤器 拦截器

    过滤器与拦截器详解图_过滤器 拦截器过滤器详解依赖于servlet容器,实现基于函数回调,可以对几乎所有请求进行过滤,但是缺点是一个过滤器实例只能在容器初始化时调用一次。使用过滤器的目的是用来做一些过滤操作,获取我们想要获取的数据,过滤器一般用于登录权限验证、资源访问权限控制、敏感词汇过滤、字符编码转换等等操作,便于代码重用,不必每个servlet中进行冗余操作。Java中的Filter并不是一个标准的Servlet,它…

    2022年8月23日
    4
  • nginx配置https转发

    nginx配置https转发

    2021年5月14日
    209
  • JavaScript数组-冒泡排序

    JavaScript数组-冒泡排序数组的冒泡排序算法也算一道经典面试题了,这里也给大家分享一下JavaScript中关于数组的冒泡排序的写法和思路:先给大家上代码:<script>//冒泡排序:将数组中的数字按照从大到小或从小到大的顺序排序vararr=[2,4,5,1,3];for(vari=0;i<arr.length-1;i++){//外层循环管趟数,即数组的全部项数都排好一共需要比较多少次一趟排好一个,注意趟

    2022年5月18日
    37
  • java中“53”个关键字(含2个保留字)

    java中“53”个关键字(含2个保留字)1.java的关键字(keyword)有多少个?   51+2个保留字=53个关键字(java的关键字都是小写的!!)    2.java的保留字(reserve word)有多少个?问题:分别是什么?    2个保留字     Java语言的的保留字是指预留的关键字    1).const  有道释义:n. 常量,

    2022年7月8日
    22
  • caffe使用教程_单反使用入门教程

    caffe使用教程_单反使用入门教程目录一、概况简介:优点:二、使用坐标缓存填充策略过期策略时间监听外部存储springboot集成三、参考文档功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入一、概况就一般的互联网行业中的应用而言,目前比较通用的并且也是普遍存在的

    2025年6月25日
    0
  • LACP链路聚合控制协议[通俗易懂]

    LACP链路聚合控制协议[通俗易懂]http://storage.chinabyte.com/64/12541564.shtmlhttp://storage.chinabyte.com/64/12541564.shtml在过去的10年里

    2022年8月6日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号