概率/随机数算法

概率/随机数算法包含主要的概率/随机数问题相关算法

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

0-1等概率问题

问题描述

  • 一个随机数产生器以概率P生成0,以概率(1-P)生成1,怎样生成等概率的0和1?

主要思路

  • 如果用这个产生器产生两个位,出现00的概率为P^2,出现01的概率为P(1-P),出现10的概率为P(1-P),而出现11的概率为(1-P)^2。故而可以用10表示1,01表示0,从而保证生成0和1的概率是相同的。

代码实现

int generate01(int (*func)()) {    if (func == NULL)        return -1;    int num1 = -1;    int num2 = -1;    int ret = -1;    while(num1 != num2){        num1 = func();        num2 = func();        if (num1 == 1 && num2 == 0) {            ret = 1;            break;        } else if (num1 == 0 && num2 == 1) {            ret = 0;            break;        }    }        return ret;}

0-1问题扩展

  • 利用这个随机数生成器,等概率的生成1,2,……,n

主要思路

  • 利用上面实现的等概率生成0-1的生成器,等概率的生成k为二进制的bit,而其表示的整数值X在0~n-1的范围时,输出X+1,否则重复产生。

代码实现

int generateRandomNum(int max) {    if (max < 1) {        return -1;    }    int bit_num = 0, i = 0;    int result = 0;        while((0x01 << bit_num) < max)         ++bit_num;    //while(result > n) {        while(bit_num > i) {            if (generate01())                result |= 0x01 <<bit_num; //result |= 0x01<<i            i++;        }        i = 0;   // }    return result;}

不重复随机数的产生

问题描述

  • 随机产生0~n-1中的k个不重复的随机数。

主要思路

  • 借用蓄水池算法。先定义一个1~n-1的数组,然后从中抽样K个数。

生成给定范围的随机数

问题描述

  • 给定能随机生成整数1~5的函数,写出能随机生成整数1~7的函数

解决思路

  • 产生K个数(k>1),假定产生的数分别为N1,N2,……Nk,则产生的数为:N1-1+(N2-1)*5 + (N3-1)*5^2,……,(Nk-1)*5^(k-1),即产生的数位于(0,5^(k-1))区间呢。然后把区间等分成k分,则产生的随机数位于(0~6),然后+1即可。如果位于K等分的余数范围,则重新执行上述过程。(PS:不用担心余数问题,当K取3时,落到余数范围的概率已经降为6/125,而且余数不会导致概率的问题,只会影响效率。次解法相当于五进制)

代码实现

int generateRandom(int n) {
    if (n < 1)
        return -1;

    unsigned long long result = 0;

    for (int i = 0; i < n; i++) {
        result += rand5();
    }
    result /= 5;

    return result;
}

如何随机选取1000个关键字

问题描述

  • 给定一个数据流,其中包含无穷尽的搜索关键字(比如,人们在谷歌搜索时不断输入的关键字)。如何才能从这个无穷尽的流中随机的选取1000个关键字?

主要思路

  • 利用蓄水池算法。先生成一个大小为1000的数组,将前1000个关键字填入数组中,随后的关键字随机进行交换。

在半径为1的圆中随机选取一点

主要思路

  • 假设圆心(0,0)。在X轴[-1,1],Y轴[-1,1]的正方形内随机选点,然后判断该点是否在圆内。正方形的面积为4,圆形的面积为Pi,故而正方形内的随机点落在圆内的概率为: Pi/4

代码实现

void generatePoint(double*x, double *y, int r){    int base = 10000;        while (pow(*x, 2) + pow(*y, 2) > pow(r, 2)) {        *x = random() % 10000;        *y = random() % 10000;        *x = (2 * r / (*x)) - r;        *y = (2 * r / (*y)) - r;    }}

蓄水池算法

问题描述

  • 从N个数中,随机抽取K个,是的每个数的抽取概率相同,并且事先不知道K的值

主要思想:

  •     保持一个集合(这个集合中的每个数字出现),作为蓄水池,依次遍历所有数据的时候以一定概率替换这个蓄水池中的数字。将前K个元素都放到水库中,然后对之后的第i个元素,以k/i的概率替换掉这个水库中的某一个元素。

方法证明:

  1. 初始情况。水库中k个元素的出现概率都一致,都是1。
  2. 第一步:处理第k+1个元素。分两种情况:① 元素全部都没有替换;② 其中某个元素被k+1元素替换。
    • 对于case ②:第k+1个元素被选中的概率是k/(k+1),故而这个新元素在水库中出现的概率就一定是k/(k+1)。而水库中剩余的元素出现的概率也就是1-P(P为元素被替换的概率)。水库中任意一个元素被替换的概率为:(k/k+1) * (1/k) = 1/(k+1)。而旧元素出现的概率为k/k+1。即旧元素和新元素出现的概率是相等的。
    • 对于case①:当没有元素被替换时,每个元素出现的概率是一样的。具体为:1-P(P为第k+1个元素被选中) = 1 – k/(k+1) = 1/(k+1)
  3.  利用归纳法:
    • 对于第k+i个元素,其中i ∈(0, length-k)。其出现在水库中的概率为k/(k+i)。利用上面的两步可以得出结论。

算法实现:

int impounding_reservoir(int *array,int length, int k) {    if (k <= 0 || array == NULL         || length <= 0 || k > length) {        return 0;    }        int result[k];    int i = 0, j = 0;    srand((unsigned) time(NULL));     for (i = 0; i < k; i++) {        result[i] = array[i];    }           for (i = k; i < length; i++) {        j = random() % length;        if(j < k)            result[j] = array[i];    }           for (i = 0; i < k; i++)        printf("%d ", result[i]);    printf("\n");     return k;}

产生1~400范围内不重复的20个随机数

int * generateRandom(int *array, int num, int start, int end)
{
    int size = end / 32 + end % 32 > 0 ? 1: 0;

    int tmp_arr[size] = {0};

    int index = 1, count = 0;

    srand(time(NULL));


    while(count < num){

        index += rand() ;
        index %= 400 + 1;

        if (test_bit(tmp_arr, index)) {
            continue;
        } else {
            set_bit(tmp_arr, index);
            array[count] = index;
            index = 1;
            count++;
        } 
    }
    return array;

}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/158929.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 变速运动实例(二)[通俗易懂]

    变速运动实例(二)[通俗易懂]变速运动实例(二)(1)右下角区块初始位置处于右下角。当页面滚动时,区块位置会随之滑动,并且最终停止在右下角位置。(2)滑块处于浏览器右边视角中部,当页面滚动时,最终停止滚动时滑块也会滚动到中部。<!doctypehtml><html><head><title>运动</title><…

    2025年7月17日
    3
  • chmod 755 filename「建议收藏」

    chmod 755 filename「建议收藏」chmod755filenamechmod755filenameFunctionAttentionchmod755filenameFunctionTochangethelimitofyourfilesAttentionwhenyouwanttochangethelimitofadirectory,youshouldbecarefultouse‘-R’after‘chmod’,becausethetotalsub-directori

    2022年7月16日
    14
  • mysql一次查询,返回多个统计结果

    mysql一次查询,返回多个统计结果

    2021年5月16日
    151
  • 浪漫公式 Love 分段函数和各种心型函数 matlab实现

    浪漫公式 Love 分段函数和各种心型函数 matlab实现浪漫公式Love分段函数和各种心型函数matlab实现

    2022年8月5日
    5
  • Network 之二 Ethernet(以太网)中的 MAC、MII、PHY 详解[通俗易懂]

    Network 之二 Ethernet(以太网)中的 MAC、MII、PHY 详解[通俗易懂]结构  从硬件的角度看,以太网接口电路主要由MAC(MediaAccessControl)控制器和物理层接口PHY(PhysicalLayer,PHY)两大部分构成。如下图所示  但是,在实际的设计中,以上三部分并不一定独立分开的。由于,PHY整合了大量模拟硬件,而MAC是典型的全数字器件。考虑到芯片面积及模拟/数字混合架构的原因,通常,将MAC集成进微控制器而将PHY留在片外…

    2022年9月22日
    2
  • 无名汉化组官网_neverland永无岛

    无名汉化组官网_neverland永无岛永无乡包含 n 座岛,编号从 1 到 n ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b ,则称岛 a 和岛 b 是连通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x 连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪座,请你输出那

    2022年8月9日
    9

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号