python求组合数cnm公式_组合数公式推导Cnm = n! / [(n-m)! * m!]「建议收藏」

python求组合数cnm公式_组合数公式推导Cnm = n! / [(n-m)! * m!]「建议收藏」展开全部cnm的意思是从n个中取m个无排列的个数,可如此思考,先取e5a48de588b63231313335323631343130323136353331333431336230第一个,有n种取法,第二个有n-1种取法……第m个有n+1-m种取法,这些取法相乘即为n!/(n-m)!但这种取法实际上为这取的m个排序了,换句话说这是排序了以后的个数,而我们所要的是不排序的个数,那么m个排序…

大家好,又见面了,我是你们的朋友全栈君。

展开全部

cnm的意思是从n个中取m个无排列的个数,可如此思考,先取e5a48de588b63231313335323631343130323136353331333431336230第一个,有n种取法,第二个有n-1种取法……第m个有n+1-m种取法,这些取法相乘即为n!/(n-m)!

但这种取法实际上为这取的m个排序了,换句话说这是排序了以后的个数,而我们所要的是不排序的个数,那么m个排序共有m!种,因此在原先的基础上除以m!即可,即为n! / [(n-m)! * m!]

c(m,n)=c(m-1,n-1)+c(m-1,n)等式左边表示从m个元素中选取n个元素,而等式右边表示这一个过程的另一种实现方法:

任意选择m中的某个备选元素为特殊元素,从m中选n个元素可以由此特殊元素的被包含与否分成两类情况,即n个被选择元素包含了特殊元素和n个被选择元素不包含该特殊元素。

前者相当于从m-1个元素中选出n-1个元素的组合,即c(m-1,n-1);后者相当于从m-1个元素中选出n个元素的组合,即c(m-1,n)。

扩展资料:

从 n 个不同元素中每次取出 m 个不同元素 python求组合数cnm公式_组合数公式推导Cnm = n! / [(n-m)! * m!]「建议收藏」 ,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。所有这样的组合的种数称为组合数。

互补性质:从n个不同元素中取出m个元素的组合数=从n个不同元素中取出 (n-m) 个元素的组合数;

这个性质很容易理解,例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。

规定:C(n,0)=1 C(n,n)=1 C(0,0)=1

组合恒等式:若表示在 n 个物品中选取 m 个物品,则如存在下述公式:C(n,m)=C(n,n-m)=C(n-1,m-1)+C(n-1,m)。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/159932.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号