条件概率/全概率/贝叶斯公式

条件概率/全概率/贝叶斯公式参考:https://www.cnblogs.com/ohshit/p/5629581.html1、条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditionalprobability)为:P(A|B)=P(AB)/P(B)分析:一般说到条件概率这一概念的时候,事…

大家好,又见面了,我是你们的朋友全栈君。

参考:https://www.cnblogs.com/ohshit/p/5629581.html

1、条件概率公式

        设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:

                     P(A|B)=P(AB)/P(B)

分析:一般说到条件概率这一概念的时候,事件A和事件B都是同一实验下的不同的结果集合,事件A和事件B一般是有交集的,若没有交集(互斥),则条件概率为0,例如:

① 扔骰子,扔出的点数介于[1,3]称为事件A,扔出的点数介于[2,5]称为事件B,问:B已经发生的条件下,A发生的概率是多少?

也即,做一次实验时,即有可能仅发生A,也有可能仅发生B,也有可能AB同时发生,

② 同时扔3个骰子,“三个数都不一样”称为事件A,“其中有一个点数为1”称为事件B。这一题目中,AB也是有交集的。

条件概率/全概率/贝叶斯公式

用图更能容易的说明上述问题,我们进行某一实验,某一实验所有的可能的样本的结合为Ω(也即穷举实验的所有样本),圆圈A代表事件A所能囊括的所有样本,圆圈B代表事件B所能囊括的所有样本。

由图再来理解一下这个问题:“B已经发生的条件下,A发生的概率”,这句话中,“B已经发生”就相当于已经把样本的可选范围限制在了圆圈B中,其实就等价于这句话:“在圆圈B中,A发生的概率”,显然P(A|B)就等于AB交集中样本的数目/B的样本数目。为什么这里用的是样本的数目相除,而上面的公式却是用的概率相除,原因很简单,用样本数目相除时,把分子分母同除以总样本数,这就变成了概率相除。

2、乘法公式

         1.由条件概率公式得:

                       P(AB)=P(A|B)P(B)=P(B|A)P(A)    

             上式即为乘法公式;

         2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2…An-1) > 0 时,有:

                 P(A1A2…An-1An)=P(A1)P(A2|A1)P(A3|A1A2)…P(An|A1A2…An-1)

3、全概率公式

        1. 如果事件组B1,B2,…. 满足

               1.B1,B2….两两互斥,即 Bi ∩ Bj = ∅ ,i≠j , i,j=1,2,….,且P(Bi)>0,i=1,2,….;

               2.B1∪B2∪….=Ω ,则称事件组 B1,B2,…是样本空间Ω的一个划分

          设 B1,B2,…是样本空间Ω的一个划分,A为任一事件,则:

条件概率/全概率/贝叶斯公式

条件概率/全概率/贝叶斯公式

题1:

已知:各个A∩Bi的样本数、Bi的样本数,
求A的样本数 / 总样本数Ω?

题2:

已知:各个A∩Bi的概率、Bi的概率,
求A的概率?

 

上图中,某一实验所有的可能的样本的集合为Ω,圆圈A代表事件A所能囊括的所有样本,把总集合Ω分为n个小集合,依次为B1、B2···Bn,这些小集合两两互斥,那么显然,A的样本数目可以通过与Bi的交集来获得,也即=(A∩B1的样本数)+(A∩B2的样本数)+····+(A∩Bn的样本数)。前文已经说过,样本数公式和概率公式,本质上是一样的东西, 题1与题2的是完全相同的题目。

4、贝叶斯公式

      1.与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概率),设B1,B2,…是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有

条件概率/全概率/贝叶斯公式

上式即为贝叶斯公式(Bayes formula),Bi 常被视为导致试验结果A发生的”原因“,P(Bi)(i=1,2,…)表示各种原因发生的可能性大小,故称先验概率;P(Bi|A)(i=1,2…)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率。

条件概率/全概率/贝叶斯公式

已知:各个A∩Bi的样本数、Bi的样本数,
求A∩B3的样本数 / A的样本数?

例子:发报台分别以概率0.6和0.4发出信号“∪”和“—”。由于通信系统受到干扰,当发出信号“∪”时,收报台分别以概率0.8和0.2受到信号“∪”和“—”;又当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“∪”。求当收报台收到信号“∪”时,发报台确系发出“∪”的概率。

解析:贝叶斯这一概念,所探讨的问题,也是事件A和事件B都是某一实验的不同的结果集合,然后把事件B这个结果集合分为n小份,每一小份也是结果集合,只不过这些小集合一定位于B集合内部,每一小份结果集合称为Bi(i∈[1,n]),Bi之间两两互斥,所有Bi并起来就是B。
本例中,实验为“发一次报,收一次报,然后记录发、收的字符”,事件A为“收到了U”,事件B为”发出了信号”,事件B1为“发出了U”,事件B2为“发出了—”,显然这里B1∪B2=B,B1∩B2=∅。要想求P(B1 | A),根据条件概率公式,P(B1 | A)=P(B1 A)/P(A),只要分别计算出分子分母就行了,显然分子可以用上面的乘法公式来求,分母为已知(若分母未知,就得用全概率公式来求)。

贝叶斯公式,根本不用记忆,其实就是条件概率、乘法公式、全概率公式的组合。

 

总结:(1)以上四个公式的研究对象,都是“同一实验下的不同的结果集合”

(2)为了容易理解这四个概率公式,可以把用“样本数目公式”来代替“概率公式”,来求概率。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/159951.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 散列的基本概念

    散列的基本概念散列的基本概念什么是散列?为什么需要散列?散列是一种思想。与已经学过的其他数据结构相比较,向量是采用循秩访问(callbyrank)的访问方式,列表是采用循位置访问(callbyposition)的访问方式,二叉搜索树是采用循关键码访问(callbykey)的访问方式,散列与他们都不一样,是采用循值访问(callbyvalue)的访问方式。举个例子,你现在身处同济大学嘉定…

    2022年5月15日
    37
  • idea2021.9激活码[最新免费获取]

    (idea2021.9激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~S32PGH0SQB-eyJsaWNlbnNlSWQiOi…

    2022年3月26日
    52
  • Hive 数据类型

    Hive 数据类型简介以下介绍Hive的数据类型,Hive的数据类型分为四种类型,分别是:列类型文字Null值复杂类型列类型整型可以指定使用整型数据类型,下表描述了各种INT数据类型。(TINYINT<SMALLINT<INT<BIGINT)类型(后缀)示例TINYINT(Y)10YSMALLINT(S)1

    2022年9月22日
    0
  • poj 1011 Sticks (DFS+剪枝)

    poj 1011 Sticks (DFS+剪枝)

    2022年1月31日
    40
  • 新浪股票接口获取历史数据

    新浪股票接口获取历史数据这两天做了一个调用新浪股票接口获取实时以及历史股票数据的应用,因为新浪没有公开关于其接口的官方文档,所以通过各种百度差了很多关于新浪股票接口的使用,不过大家基本都是转载或者直接复制,对于实时数据的获取讲的很详细,但是缺少获取历史数据的方法。关于实时数据的获取大家可以看这篇博客:实时股票数据接口 经过不懈的努力终于再这篇博文中找到了关于新浪股票历史数据的获取方式腾讯股票接口、和讯网股票接口、新浪股票…

    2022年6月24日
    113
  • 遍历map的几种方法?_hashmap如何遍历

    遍历map的几种方法?_hashmap如何遍历#先往map加入几个数据Map<Integer,String>map=newHashMap<>();map.put(1,”美好的周一”);map.put(2,”美好的周二”);map.put(3,”美好的周三”);方法一:普通的foreach循环,使用keySet()方法,遍历keyfor(Integerkey:map.keySet()){System.out.println(“key:”+key+

    2022年9月21日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号