开源Fast R-CNN代码实现物体识别[通俗易懂]

开源Fast R-CNN代码实现物体识别[通俗易懂]参考链接:https://blog.csdn.net/linolzhang/article/details/703060031.资源链接代码下载链接:https://github.com/CharlesShang/TFFRCNN训练好的网络下载链接: 在TFFRCNN-master下新建文件夹model,存放要下载入的net(参考Github下载地址),推荐下载: …

大家好,又见面了,我是你们的朋友全栈君。

参考链接:https://blog.csdn.net/linolzhang/article/details/70306003

1.资源链接

代码下载链接:https://github.com/CharlesShang/TFFRCNN

训练好的网络下载链接:

 在 TFFRCNN-master 下新建文件夹 model,存放要下载入的 net(参考 Github 下载地址),推荐下载:

    2.VGG16 – TFFRCNN (0.689 mAP on VOC07):https://drive.google.com/file/d/0B_xFdh9onPagX0JWRlR0cTZ5OGc/view

    3.VGG16 – TFFRCNN (0.748 mAP on VOC07):https://drive.google.com/file/d/0B_xFdh9onPagVmt5VHlCU25vUEE/view

    5.Resnet50 – TFFRCNN (0.712 mAP on VOC07):https://drive.google.com/file/d/0B_xFdh9onPagbXk1b0FIeDRJaU0/view

2.Requirements: software

  1. Requirements for Tensorflow (see: Tensorflow)

  2. Python packages you might not have: cython, python-opencv, easydict (recommend to install: Anaconda

3.Requirements: hardware

 

  1. For training the end-to-end version of Faster R-CNN with VGG16, 3G of GPU memory is sufficient (using CUDNN)

4.Installation (sufficient for the demo)

       1.Clone the Faster R-CNN repository

                       git clone https://github.com/CharlesShang/TFFRCNN.git

      2.Build the Cython modules

           cd TFFRCNN/lib
           make # compile cython and roi_pooling_op, you may need to modify make.sh for your platform

    我在编译过程中遇到了一些错误需要修改lib/make.sh文件(修改如下图红色部分), 我的文件内容如下:

—–     Begin   ——

#!/usr/bin/env bash
TF_INC=$(python -c ‘import tensorflow as tf; print(tf.sysconfig.get_include())’)
echo $TF_INC

TF_LIB=$(python -c ‘import tensorflow as tf; print(tf.sysconfig.get_lib())’)
echo $TF_LIB

CUDA_PATH=/usr/local/cuda/

cd roi_pooling_layer

/usr/local/cuda-9.0/bin/nvcc -std=c++11 -c -o roi_pooling_op.cu.o roi_pooling_op_gpu.cu.cc \
        -I $TF_INC -D GOOGLE_CUDA=1 -x cu -Xcompiler -fPIC -arch=sm_52

## if you install tf using already-built binary, or gcc version 4.x, uncomment the two lines below
#g++ -std=c++11 -shared -D_GLIBCXX_USE_CXX11_ABI=0 -o roi_pooling.so roi_pooling_op.cc \
#       roi_pooling_op.cu.o -I $TF_INC -fPIC -lcudart -L $CUDA_PATH/lib64

# for gcc5-built tf
#g++ -std=c++11 -shared -D_GLIBCXX_USE_CXX11_ABI=1 -o roi_pooling.so roi_pooling_op.cc \
g++ -std=c++11 -shared -D_GLIBCXX_USE_CXX11_ABI=0 -o roi_pooling.so roi_pooling_op.cc \
        roi_pooling_op.cu.o -I $TF_INC -fPIC -lcudart -L $CUDA_PATH/lib64 -L/usr/local/lib/python2.7/dist-packages/tensorflow -ltensorflow_framework \
        -L/usr/local/cuda-9.0/targets/x86_64-linux/lib/ -L$TF_LIB

cd ..

# add building psroi_pooling layer
cd psroi_pooling_layer
/usr/local/cuda-9.0/bin/nvcc -std=c++11 -c -o psroi_pooling_op.cu.o psroi_pooling_op_gpu.cu.cc \
        -I $TF_INC -D GOOGLE_CUDA=1 -x cu -Xcompiler -fPIC -arch=sm_52

g++ -std=c++11 -shared -D_GLIBCXX_USE_CXX11_ABI=0 -o psroi_pooling.so psroi_pooling_op.cc \
        psroi_pooling_op.cu.o -I $TF_INC -fPIC -lcudart -L $CUDA_PATH/lib64i -L/usr/local/lib/python2.7/dist-packages/tensorflow -ltensorflow_framework \
        -L/usr/local/cuda-9.0/targets/x86_64-linux/lib/ -L$TF_LIB

## if you install tf using already-built binary, or gcc version 4.x, uncomment the two lines below
#g++ -std=c++11 -shared -D_GLIBCXX_USE_CXX11_ABI=0 -o psroi_pooling.so psroi_pooling_op.cc \
#       psroi_pooling_op.cu.o -I $TF_INC -fPIC -lcudart -L $CUDA_PATH/lib64

cd ..

—–     End    —–

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/160411.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • matlab的插值方法[通俗易懂]

    matlab的插值方法[通俗易懂]1.Lagrange插值插值是在已知数据之间寻找估计值的过程。在信号处理和图像处理中,插值极其常用。类型很多:比如多项式插值,一、二、三维插值,样条插值等。方法介绍:对给定的n个插值点x1,x2,⋯,xnx1,x2,⋯,xn{x_1},{x_2},\cdots,{x_n}及对应的函数值y1,y2,⋯,yny1,y2,⋯,yn{y_1},{y_2},\cdots,{y_n}…

    2022年5月4日
    290
  • Jackson 动态过滤属性,编程式过滤对象中的属性

    Jackson 动态过滤属性,编程式过滤对象中的属性

    2022年3月2日
    34
  • 决策树算法例题_决策树算法比较

    决策树算法例题_决策树算法比较上一节介绍了决策树的一些基本概念,诸如树的基本结构,信息熵等。这次就用一个例子,来看看ID3决策树的具体运行过程吧~~

    2022年8月6日
    8
  • 微信小程序的拍照功能「建议收藏」

    作者:刘旭濠撰写时间:2019年04月14日一开始就想弄个微信的小程序玩玩然后想了想最后就决定了,就弄个微信小程序的拍照功能,然后就上网查询了一些资料,在微信社区文档里有很多功能可以使用,然后我就尝试的找了一下关于拍照的资料,然后整理出来文档和网上的一些资料,在微信的API还有更多的资料和其他好玩的玩意代码如下://定时器拍照setTime:function(){  lett…

    2022年4月13日
    91
  • 什么是协程「建议收藏」

    什么是协程「建议收藏」来自:程序员小灰(微信号:chengxuyuanxiaohui)—————第二天—————————————————什么是进程和线程有一定基础的小伙伴们肯定都知道进程和线程。进程是什么呢?直白地讲,进程就是应用程序的启动实例。比如我们运行一个游戏,打开一个软件,就是开启了一个进程。进程拥有代码和打开的文件资源、数据资…

    2022年7月27日
    8
  • spark streaming 滑动窗口

    spark streaming 滑动窗口滑动窗口DStream.window(windowlength,slidinginterval) batchinterval:批处理时间间隔,sparkstreaming将消息源(Kafka)的数据,以流的方式按批处理时间间隔切片,一个批处理间隔时间对应1个切片对应生成的1个RDDwindowlength:窗口时间长度,每个批处理间隔将会实际处理的RDD个数(1…n…

    2022年6月23日
    28

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号