【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]问题描述有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8i(物品编号) 1 2 3 4 w(体积) 2 3 4 5 v(价值) 3 4 5 6 总…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

问题描述

有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8

i(物品编号) 1 2 3 4
w(体积) 2 3 4 5
v(价值) 3 4 5 6

 

总体思路

根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

动态规划的原理

动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

背包问题的解决过程

在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值,同时背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选)。

1、建立模型,即求max(V1X1+V2X2+…+VnXn);

2、寻找约束条件,W1X1+W2X2+…+WnXn<capacity;

3、寻找递推关系式,面对当前商品有两种可能性:

  • 包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);
  • 还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}。

其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i),但价值增加了v(i);

由此可以得出递推关系式:

  • j<w(i)      V(i,j)=V(i-1,j)
  • j>=w(i)     V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}

这里需要解释一下,为什么能装的情况下,需要这样求解(这才是本问题的关键所在!):

可以这么理解,如果要到达V(i,j)这一个状态有几种方式?

肯定是两种,第一种是第i件商品没有装进去,第二种是第i件商品装进去了。没有装进去很好理解,就是V(i-1,j);装进去了怎么理解呢?如果装进去第i件商品,那么装入之前是什么状态,肯定是V(i-1,j-w(i))。由于最优性原理(上文讲到),V(i-1,j-w(i))就是前面决策造成的一种状态,后面的决策就要构成最优策略。两种情况进行比较,得出最优。

4、填表,首先初始化边界条件,V(0,j)=V(i,0)=0;

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

然后一行一行的填表:

  • 如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;
  • 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;
  • 如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10……

所以填完表如下图:

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

5、表格填完,最优解即是V(number,capacity)=V(4,8)=10。

 

代码实现

为了和之前的动态规划图可以进行对比,尽管只有4个商品,但是我们创建的数组元素由5个。

#include<iostream>
using namespace std;
#include <algorithm>

int main()
{
	int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
	int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
	int bagV = 8;					        //背包大小
	int dp[5][9] = { { 0 } };			        //动态规划表

	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}

	//动态规划表的输出
	for (int i = 0; i < 5; i++) {
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}

	return 0;
}

 

背包问题最优解回溯

通过上面的方法可以求出背包问题的最优解,但还不知道这个最优解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

  • V(i,j)=V(i-1,j)时,说明没有选择第i 个商品,则回到V(i-1,j);
  • V(i,j)=V(i-1,j-w(i))+v(i)时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1,j-w(i));
  • 一直遍历到i=0结束为止,所有解的组成都会找到。

就拿上面的例子来说吧:

  • 最优解为V(4,8)=10,而V(4,8)!=V(3,8)却有V(4,8)=V(3,8-w(4))+v(4)=V(3,3)+6=4+6=10,所以第4件商品被选中,并且回到V(3,8-w(4))=V(3,3);
  • 有V(3,3)=V(2,3)=4,所以第3件商品没被选择,回到V(2,3);
  • 而V(2,3)!=V(1,3)却有V(2,3)=V(1,3-w(2))+v(2)=V(1,0)+4=0+4=4,所以第2件商品被选中,并且回到V(1,3-w(2))=V(1,0);
  • 有V(1,0)=V(0,0)=0,所以第1件商品没被选择。

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

 

代码实现

背包问题最终版详细代码实现如下:

#include<iostream>
using namespace std;
#include <algorithm>

int w[5] = { 0 , 2 , 3 , 4 , 5 };			//商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 };			//商品的价值3、4、5、6
int bagV = 8;					        //背包大小
int dp[5][9] = { { 0 } };			        //动态规划表
int item[5];					        //最优解情况

void findMax() {					//动态规划
	for (int i = 1; i <= 4; i++) {
		for (int j = 1; j <= bagV; j++) {
			if (j < w[i])
				dp[i][j] = dp[i - 1][j];
			else
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
		}
	}
}

void findWhat(int i, int j) {				//最优解情况
	if (i >= 0) {
		if (dp[i][j] == dp[i - 1][j]) {
			item[i] = 0;
			findWhat(i - 1, j);
		}
		else if (j - w[i] >= 0 && dp[i][j] == dp[i - 1][j - w[i]] + v[i]) {
			item[i] = 1;
			findWhat(i - 1, j - w[i]);
		}
	}
}

void print() {
	for (int i = 0; i < 5; i++) {			//动态规划表输出
		for (int j = 0; j < 9; j++) {
			cout << dp[i][j] << ' ';
		}
		cout << endl;
	}
	cout << endl;

	for (int i = 0; i < 5; i++)			//最优解输出
		cout << item[i] << ' ';
	cout << endl;
}

int main()
{
	findMax();
	findWhat(4, 8);
	print();

	return 0;
}

【动态规划】01背包问题(通俗易懂,超基础讲解)[通俗易懂]

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/164393.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Java环境及Eclipse(MyEclipse)安装[通俗易懂]

    本文旨在教会新手安装和配置jdk和java开发环境,其中编程软件用的是MyEclipse,非Eclipse,简单说一下这两个区别,一般教学用的是eclipse,MyEclispe有Eclipse的所有功能,使用方法和界面基本一致,而且之后学jsp的时候,便需要开始使用MyEclipse,所以建议大家直接使用MyEclipse即可,无需安装Eclipse。本文安装的jdk和eclipse均为64位…

    2022年4月15日
    79
  • 写了很久,这是一份最适合/贴切普通大众/科班/非科班的『学习路线』

    写了很久,这是一份最适合/贴切普通大众/科班/非科班的『学习路线』说实话,对于学习路线这种文章我一般是不写的,大家看我的文章也知道,我是很少写建议别人怎么样怎么样的文章,更多的是,写自己的真实经历,然后供大家去参考,这样子,我内心也比较踏实,也不怕误导他人。但是,最近好多人问我学习路线,而且很多大一大二的,说自己很迷茫,看到我那篇普普通通,我的三年大学之后很受激励,觉得自己也能行,(是的,别太浪,你一定能行)希望我能给他个学习路线,说…

    2022年7月16日
    20
  • IBM P750 AIX机器根目录空间满问题解决办法

    IBM P750 AIX机器根目录空间满问题解决办法今天有系统应用人员跟我讲数据库双机服务器空间快要满了,我登录到服务器上去查看发现根目录3G的空间只剩下不到一百多兆了,附图如下列出根目录下最占用空间的文件$du-amx/|sort-rn|head-n10关键字”/dev/null2>&1″,这是AIX6.1TL7中的cas_agent两个bug,关于这两个bug的英文介绍请移步http:/…

    2022年6月23日
    49
  • shiro面试题「建议收藏」

    shiro面试题「建议收藏」1、什么是ShiroApacheShiro是Java 的一个安全(权限)框架。Shiro可以非常容易的开发出足够好的应用,其不仅可以用在JavaSE环境,也可以用在JavaEE环境。Shiro可以完成:认证、授权、加密、会话管理、与Web集成、缓存等。2、描述Shiro认证流程1、收集用户身份/凭证2、调用Subject.login进行登录3、创建自定义的R…

    2022年10月15日
    2
  • MySQL数据库:事务和ACID实现原理

    MySQL数据库:事务和ACID实现原理

    2021年4月10日
    191
  • DirectX修复工具常见问题解答

    DirectX修复工具常见问题解答经常有人在网上发帖询问DirectX修复工具的一些问题,但是有些问题的回答并不够准确。因此作者在这里把一些常见的问题列出,供大家参考。问题1:XP系统上运行软件时出现0xc0000135的错误,怎么回事?答:WindowsXPSP3系统用户需先安装Microsoft.NETFramework2.0或更高版本才可运行本程序,详情请见程序文件夹中的“致WindowsXP用户

    2022年5月29日
    191

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号