python进阶(13)装饰器[通俗易懂]

python进阶(13)装饰器[通俗易懂]装饰器装饰器放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

装饰器

装饰器放在一个函数开始定义的地方,它就像一顶帽子一样戴在这个函数的头上。和这个函数绑定在一起。在我们调用这个函数的时候,第一件事并不是执行这个函数,而是将这个函数做为参数传入它头顶上这顶帽子,这顶帽子我们称之为 装饰器
 

装饰器的功能

  1. 引入日志
  2. 函数执行时间统计
  3. 执行函数前预备处理
  4. 执行函数后清理功能
  5. 权限校验等场景
  6. 缓存
     

Hello,装饰器

装饰器的使用方法很固定

  • 先定义一个装饰器(帽子)
  • 再定义你的业务函数或者类
  • 最后把装饰器(帽子)扣在这个函数头上
def decorator(func):
    def wrapper(*args, **kw):
        return func()
    return wrapper

@decorator  # 也可以不用装饰器,在最底部加上function = decorator(function),效果是一样的
def function():
    print("hello, decorator")

实际上,装饰器并不是编码必须性,意思就是说,你不使用装饰器完全可以
 

装饰器的优点

  • 更加优雅,代码结构更加清晰
  • 将实现特定的功能代码封装成装饰器,提高代码复用率,增强代码可读性

接下来,我将以实例讲解,如何编写出各种简单及复杂的装饰器。
 

日志打印器

首先是日志打印器。 实现的功能:

  • 在函数执行前,先打印一行日志告知一下主人,我要执行函数了。
  • 在函数执行完,也不能拍拍屁股就走人了,咱可是有礼貌的代码,再打印一行日志告知下主人,我执行完啦。
# 这是装饰器函数,参数 func 是被装饰的函数
def logger(func):
    def wrapper(*args, **kwargs):
        print('主人,我准备开始执行:{} 函数了:'.format(func.__name__))
        # 真正执行的是这行。
        func(*args, **kwargs)
        print('主人,我执行完啦。')
    return wrapper


@logger  # 相当于add = logger(add)
def add(x, y):
    print("{} + {} = {}".format(x, y, x + y))


add(200, 50)

>>> 主人,我准备开始执行:add 函数了:
>>> 200 + 50 = 250
>>> 主人,我执行完啦。

代码解析

python解释器从上往下执行,先定义了有一个logger函数,返回的是wrapper函数的引用,当执行到@logger时候,此时内部已经生成了一个闭包,实际上这句哈就相当于add = logger(add),add变量指向了logger函数,logger函数又返回了wrapper,所以add变量其实是指向了def wrapper函数,当执行add(200, 50),如果没有@logger装饰器,正常来说是执行add函数下面的print语句,但是现在add变量已经指向了wrapper函数,所以此时,执行的是wrapper函数里面的内容。
 
所以输出的第一句内容是print('主人,我准备开始执行'),接着是执行func函数,此时func指向的是add函数,为什么?因为add = logger(add)是传入了变量add,所以def logger(func)就变成了def logger(add),自然而然func(*args, **kwargs)就变成了add(*args, **kwargs),调用的是add函数
 
所以输出的第二句是x和y的和,输出的第三句就是主人,我执行完了
结论:@logger完全可以用add = logger(add)来代替,使用@logger这种语法糖是更加方便,清晰
 

时间装饰器

实现功能:顾名思义,就是计算一个函数的执行时长。

# 定义一个计算函数时长的装饰器
def timer(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        func(*args, **kwargs)
        end_time = time.time()
        cost = end_time - start_time
        print("花费了{}s".format(cost))
    return wrapper


# 定义一个下载图片并保存到本地
def downloadPicture(url):
    r = requests.get(url)
    data = r.content
    with open((str(random.random()) + '.jpg'), 'wb') as f:
        f.write(data)

# 使用多线程下载4张图片
@timer
def time1():
    t1 = threading.Thread(target=downloadPicture, args=('https://ss0.bdstatic.com/70cFuHSh_Q1YnxGkpoWK1HF6hhy/it/u=2106474246,1283617636&fm=26&gp=0.jpg', ))
    t1.start()
    t2 = threading.Thread(target=downloadPicture, args=('https://ss1.bdstatic.com/70cFvXSh_Q1YnxGkpoWK1HF6hhy/it/u=3083490177,4087830236&fm=26&gp=0.jpg', ))
    t2.start()
    t3 = threading.Thread(target=downloadPicture, args=('https://ss0.bdstatic.com/70cFuHSh_Q1YnxGkpoWK1HF6hhy/it/u=1828982182,1114677948&fm=26&gp=0.jpg', ))
    t3.start()
    t4 = threading.Thread(target=downloadPicture, args=('https://ss3.bdstatic.com/70cFv8Sh_Q1YnxGkpoWK1HF6hhy/it/u=45058783,2028528740&fm=11&gp=0.jpg', ))
    t4.start()

# 调用time1函数
time1()

>>> 花费了0.0011370182037353516s

 

带参数的装饰器

通过上面两个简单的入门示例,你应该能体会到装饰器的工作原理了。
 
不过,装饰器的用法还远不止如此,深究下去,还大有文章。今天就一起来把这个知识点学透。
 
回过头去看看上面的例子,装饰器是不能接收参数的。其用法,只能适用于一些简单的场景。不传参的装饰器,只能对被装饰函数,执行固定逻辑。
 
装饰器本身是一个函数,做为一个函数,如果不能传参,那这个函数的功能就会很受限,只能执行固定的逻辑。这意味着,如果装饰器的逻辑代码的执行需要根据不同场景进行调整,若不能传参的话,我们就要写两个装饰器,这显然是不合理的。
 
比如我们要实现一个可以定时发送邮件的任务(一分钟发送一封),定时进行时间同步的任务(一天同步一次),就可以自己实现一个 periodic_task (定时任务)的装饰器,这个装饰器可以接收一个时间间隔的参数,间隔多长时间执行一次任务。
 
那我们来自己创造一个伪场景,可以在装饰器里传入一个参数,指明国籍,并在函数执行前,用自己国家的母语打一个招呼。

def say_hello(country):
    def wrapper(func):
        def deco(*args, **kwargs):
            if country == "china":
                print("你好!")
            elif country == "america":
                print('hello.')
            else:
                return
            # 真正执行函数的地方
            func(*args, **kwargs)
        return deco
    return wrapper


@say_hello("china")
def a():
    pass


@say_hello("america")
def b():
    pass


a()
b()


>>> 你好!
>>> hello.

 

不带参数的类装饰器

以上都是基于函数实现的装饰器,在阅读别人代码时,还可以时常发现还有基于类实现的装饰器。
 
基于类装饰器的实现,必须实现 __call__ __init__两个内置函数。

  • init :接收被装饰函数
  • call :实现装饰逻辑。

还是以日志打印这个简单的例子为例

class Logger(object):
    def __init__(self, func):
        self.func = func

    def __call__(self, *args, **kwargs):
        print("[INFO]: the function {}() is running...".format(self.func.__name__))
        return self.func(*args, **kwargs)


@Logger
def say(something):
    print("say {}!".format(something))


say("hello")

>>> [INFO]: the function say() is running...
>>> say hello!

 

带参数的类装饰器

上面不带参数的例子,你发现没有,只能打印INFO级别的日志,正常情况下,我们还需要打印DEBUG WARNING等级别的日志。这就需要给类装饰器传入参数,给这个函数指定级别了。
 
带参数和不带参数的类装饰器有很大的不同。

  • init :不再接收被装饰函数,而是接收传入参数
  • call :接收被装饰函数,实现装饰逻辑
class Logger(object):
    def __init__(self, level='INFO'):
        self.level = level

    def __call__(self, func):  # 接受函数
        def wrapper(*args, **kwargs):
            print("[{level}]: the function {func}() is running...".format(level=self.level, func=func.__name__))
            func(*args, **kwargs)
        return wrapper  # 返回函数


@Logger(level='WARNING')
def say(something):
    print("say {}!".format(something))


say("hello")

>>> [WARNING]: the function say() is running...
>>> say hello!

参考链接:https://mp.weixin.qq.com/s/-jy7v4tt9fmMpMcfPKWNfQ

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/164952.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 越权漏洞详解

    越权漏洞详解OverPermission越权风险问题越权访问(BrokenAccessControl,简称BAC)是Web应用程序中一种常见的漏洞越权访问漏洞的产生比如,某个订单系统,用户可以查询自己的订单信息。A用户查询订单时,发送的HTTP请求中包含参数“orderid=A”,订单系统取得orderid后最终会查询数据库,查询语句类似于“select*fromtablenamewhereorderid=A”。B用户查询订单时,发送的HTTP请求中包含参数“orderid=B”,系统查询数

    2022年6月16日
    34
  • idea2021.11激活(注册激活)

    (idea2021.11激活)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html1M3Q9SD5XW-eyJsaWN…

    2022年3月28日
    81
  • vue项目封装组件_前端组件封装

    vue项目封装组件_前端组件封装前言在使用vue进行日常开发的时候,组件的封装是一个很常规的操作,也可以从npm仓库下载别人封装好的组件来使用,比如iview,elementui等…但每个项目的应用场景不同,所以我们有时也需要自己封装组件。而如果在开发中换了项目,那么就只能复制代码过去,略显麻烦,这个时候呢,可以将封装好的组件上传到npm仓库,需要使用时就可以直接通过npm指令下载,非常方便。1.环境准备因为我们封装的是Vue组件,所以直接在脚手架中封装即可。//创建项目因为我们只需封装组件所以RouterSt

    2022年9月23日
    0
  • 杂项-黑苹果安装教程「建议收藏」

    杂项-黑苹果安装教程「建议收藏」说明黑苹果安装步骤笔记准备工作:一台电脑(预装Win10),一个8g及以上的U盘(10.15+版本的系统需要更大的U盘),一块硬盘或一个30g以上的分区,一双手,一个大脑。测试用例主要硬件机器:台式组装机主板:技嘉h110m-SCPU:3.19GHzIntelCorei5显卡:IntelHDGraphics530+NVIDIAGeForceGT730硬盘:GALAXTA1D0120A+西数机械盘500G网卡:RealtekRTL8168G/81

    2022年5月6日
    326
  • 二叉树的详解与实现「建议收藏」

    二叉树的详解与实现「建议收藏」简介二叉树的相关概念,如,树高度,节点层数,节点度数,路径,叶节点,分支节点,根节点,父节点,左节点,右节点,兄弟节点,祖先节点,子孙节点,左子树,右子树等基本概念,不再赘述。二叉树分类1、完全二叉树若设二叉树的高度为h,除第h层外,其它各层(1~h-1)的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。一维数组可以作为完全二叉树…

    2022年5月31日
    32
  • C#操作XML方法集合

    C#操作XML方法集合先来了解下操作XML所涉及到的几个类及之间的关系如果大家发现少写了一些常用的方法,麻烦在评论中指出,我一定会补上的!谢谢大家*1XMLElement主要是针对节点的一些属性进行操作

    2022年6月30日
    19

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号