多进程 python_Python 多进程

多进程 python_Python 多进程进程前置知识点进程:一个程序运行起来后,代码+用到的资源称之为进程,它是操作系统分配资源的基本单元。并发:指的是任务数多余cpu核数,通过操作系统的各种任务调度算法,实现用多个任务“一起”执行

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

进程

 

前置知识点

  • 进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。
  • 并发:指的是任务数多余cpu核数,通过操作系统的各种任务调度算法,实现用多个任务“一起”执行(实际上总有一些任务不在执行,因为切换任务的速度相当快,看上去一起执行而已)
  • 并行:指的是任务数小于等于cpu核数,即任务真的是一起执行的
     

进程的创建

multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情

from multiprocessing import Process
import os


# 子进程要执行的代码
def run_proc(name):
    print('启动子进程{}{}'.format(name, os.getpid()))


if __name__ == '__main__':
    print('父进程{}'.format(os.getpid()))
    p = Process(target=run_proc, args=('test',))
    print('子进程将要启动')
    p.start()
    p.join()
    print('子进程结束')

 

进程pid

from multiprocessing import Process
import os
import time


def run_proc():
    """子进程要执行的代码"""
    print('子进程运行中,pid=%d...' % os.getpid())  # os.getpid获取当前进程的进程号
    print('子进程将要结束...')


if __name__ == '__main__':
    print('父进程pid: %d' % os.getpid())  # os.getpid获取当前进程的进程号
    p = Process(target=run_proc)
    p.start()

>>> 父进程pid: 3580
>>> 子进程运行中,pid=3581...
>>> 子进程将要结束...

 

Process语法结构

Process([group [, target [, name [, args [, kwargs]]]]])
  • target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码(常用)
  • args:给target指定的函数传递的参数,以元组的方式传递(常用)
  • kwargs:给target指定的函数传递命名参数
  • name:给进程设定一个名字,可以不设定
  • group:指定进程组,大多数情况下用不到

Process创建的实例对象的常用方法:

  • start():启动子进程实例(创建子进程)
  • is_alive():判断进程子进程是否还在活着
  • join([timeout]):是否等待子进程执行结束,或等待多少秒
  • terminate():不管任务是否完成,立即终止子进程

Process创建的实例对象的常用属性:

  • name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
  • pid:当前进程的pid(进程号)
     

给子进程指定的函数传递参数

from multiprocessing import Process
import os
from time import sleep


def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)

if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}
>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}
>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}
>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}
>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}

 

进程和线程的区别

  • 进程是资源调度的基本单位,而线程是程序执行的基本单位
  • 不同进程的地址空间是独立的,而同一进程中的线程之间共享
  • 进程之间通信必须使用操作系统提供的进程间通信机制,同一进程中的各线程可以直接通信
  • 多进程之间可以并发执行,多线程之间也可以并发执行
  • 线程切换的开销要比进程切换的开销小
     

进程间通信

如果两个进程之间需要通信,则需要用到Queue类,相当于队列
 

初始化Queue()对象

q = Queue()

括号中可以指定最大可接受的消息数量,若不指定,则默认代表消息数量没有上限
 

Queue()类的方法

Queue有多个方法,下面介绍几个常用的方法
 

Queue.qsize()

返回当前队列包含的消息数量;
 

Queue.empty()

判断队列是否为空,如果队列为空,返回True,反之False
 

Queue.full()

判断队列是否满了,如果队列满了,返回True,反之False
 

Queue.get([block[, timeout]])

获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
block=True的情况
如果block=True,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止
如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出Queue.Empty异常;
block=False的情况
如果block=False,消息列队如果为空,则会立刻抛出Queue.Empty异常;
 

Queue.get_nowait()

相当Queue.get(False)
 

Queue.put(item,[block[, timeout]])

将item消息写入队列,block默认值为True
block=True的情况
如果block=True,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止
如果设置了timeout,则会等待timeout秒,若还没空间,则抛出Queue.Full异常;
block=False的情况
如果block=False,消息列队如果没有空间可写入,则会立刻抛出Queue.Full异常;
 

Queue.put_nowait(item)

相当Queue.put(item, False)
 

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random


# 写数据进程执行的代码:
def write(q):
    print('Process to write: %s' % os.getpid())
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())


# 读数据进程执行的代码:
def read(q):
    print('Process to read: %s' % os.getpid())
    while True:
        value = q.get(True)
        print('Get %s from queue.' % value)


if __name__ == '__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 启动子进程pr,读取:
    pr.start()
    # 等待pw结束:
    pw.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    pr.terminate()

 

进程池

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

"""
如果要启动大量的子进程,可以用进程池的方式批量创建子进程:
"""
from multiprocessing import Pool
import os, time, random


def long_time_task(name):
    print('运行任务 %s (%s)...' % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print('任务 %s 运行 %0.2f 秒' % (name, (end - start)))


if __name__ == '__main__':
    print('父进程 %s.' % os.getpid())
    p = Pool(4)  # 创建进程池中最多存4个子进程
    for i in range(5):
          # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
          # 每次循环将会用空闲出来的子进程去调用目标
        p.apply_async(long_time_task, args=(i,))
    print('等待所有子进程完成...')
    p.close()  # 关闭进程池,关闭后po不再接收新的请求
    p.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
    print('所有子进程完成.')
# 运行结果
>>> 等待所有子进程完成...
>>> 运行任务 0 (3722)...
>>> 运行任务 1 (3723)...
>>> 运行任务 2 (3724)...
>>> 运行任务 3 (3725)...
>>> 任务 3 运行 0.67 秒
>>> 运行任务 4 (3725)...
>>> 任务 2 运行 1.29 秒
>>> 任务 0 运行 2.00 秒
>>> 任务 1 运行 2.77 秒
>>> 任务 4 运行 2.31 秒
>>> 所有子进程完成.

 

multiprocessing.Pool常用函数解析:

  • apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
  • close():关闭Pool,使其不再接受新的任务;
  • terminate():不管任务是否完成,立即终止;
  • join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
     

代码解读:

Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。
请注意输出的结果,task 0,1,2,3是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:

p = Pool(5)

就可以同时跑5个进程。
由于Pool的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。
 

进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

# 修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random

def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))

def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "itcast":
        q.put(i)

if __name__=="__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())
>>> (4157) start
>>> writer启动(4159),父进程为(4157)
>>> reader启动(4160),父进程为(4157)
>>> reader从Queue获取到消息:i  
>>> reader从Queue获取到消息:t
>>> reader从Queue获取到消息:c
>>> reader从Queue获取到消息:a
>>> reader从Queue获取到消息:s
>>> reader从Queue获取到消息:t
>>> (4157) End
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/165494.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • markdown总结

    markdown总结markdown总结

    2022年4月24日
    40
  • R语言绘制火山图_r语言画曲线图

    R语言绘制火山图_r语言画曲线图基因表达差异火山图提到差异火山图,相信很多同学肯定不陌生。因为形似火山(喷发),所以称为火山图。差异火山图最常见于转录组数据的分析中,在基因表达层面,用于展示两组间表达量上调和下调的基因。常规的火山图中主要包含了两个重要信息,差异表达倍数(FoldChange值,简称FC,作图时会对FC进行log转化,根据logFC值的正负判断这些基因的表达量是上调了还是下调了)以及统计学显著性p值(p-value,通常是FDR校正后的p值,根据校正后p值判断基因表达量上调或下调是否具有显著性)。因此在判..

    2022年10月19日
    3
  • linux find命令详解_linux du命令详解

    linux find命令详解_linux du命令详解find命令格式:findpath-option[-print][-exec-okcommand]{}\;find命令的参数:path:要查找的目录路径。~表示$HO

    2022年7月30日
    6
  • 购物车功能模块设计图_超市购物车设计

    购物车功能模块设计图_超市购物车设计一、 需求分析 一:购物车模块功能需求 客户在浏览网页的时候,当遇到喜欢的商品、又不急于结账而是继续浏览货物时。需要一个购物篮来存储她已经选中的商品。以便于结账或用于对比商品的详细参数。用户在购物车页面中需要对购物车中的商品添加数量、移除商品、清空购物车等功能。

    2025年5月26日
    0
  • linux中的ldd命令简介

    linux中的ldd命令简介在linux中,有些命令是大家通用的,比如ls,rm,mv,cp等等,这些我觉得没有必要再细说了。而有些命令,只有开发人员才会用到的,这类命令,作为程序员的我们,是有必要了解的,有的甚至需要熟练使用。有的人总说,这些命令不重要,用的时候去查就行了,这么多么扯淡的说法啊。具体用法细节是可以可查,但至少得知道有ldd这个东西吧。连ldd都不知道,怎么知道ldd是干啥的呢?

    2022年4月28日
    76
  • DEDECMS万能标签{dede:sql}使用教程详解

    DEDECMS万能标签{dede:sql}使用教程详解

    2021年9月24日
    46

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号