pcm是什么音频格式_pcm转mp3

pcm是什么音频格式_pcm转mp3【文章内容属于多方转载内容】PCMParametersPCMaudioiscodedusingacombinationofvariousparameters.Resoluti

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

【文章内容属于多方转载内容】

PCM Parameters

 

PCM audio is coded using a combination of various parameters.

Resolution/Sample Size

This parameter specifies the amount of data used to represent each discrete amplitude sample. The most common values are 8 bits (1 byte), which gives a range of 256 amplitude steps, or 16 bits (2 bytes), which gives a range of 65536 amplitude steps. Other sizes, such as 12, 20, and 24 bits, are occasionally seen. Some king-sized formats even opt for 32 and 64 bits per sample.

Byte Order

When more than one byte is used to represent a PCM sample, the byte order (big endian vs. little endian) must be known. Due to the widespread use of little-endian Intel CPUs, little-endian PCM tends to be the most common byte orientation.

Sign

It is not enough to know that a PCM sample is, for example, 8 bits wide. Whether the sample is signed or unsigned is needed to understand the range. If the sample is unsigned, the sample range is 0..255 with a centerpoint of 128. If the sample is signed, the sample range is -128..127 with a centerpoint of 0. If a PCM type is signed, the sign encoding is almost always 2’s complement. In very rare cases, signed PCM audio is represented as a series of sign/magnitude coded numbers.

Channels And Interleaving

If the PCM type is monaural, each sample will belong to that one channel. If there is more than one channel, the channels will almost always be interleaved: Left sample, right sample, left, right, etc., in the case of stereo interleaved data. In some rare cases, usually when optimized for special playback hardware, chunks of audio destined for different channels will not be interleaved.

Frequency And Sample Rate

This parameter measures how many samples/channel are played each second. Frequency is measured in samples/second (Hz). Common frequency values include 8000, 11025, 16000, 22050, 32000, 44100, and 48000 Hz.

Integer Or Floating Point

Most PCM formats encode samples using integers. However, some applications which demand higher precision will store and process PCM samples using floating point numbers.

Floating-point PCM samples (32- or 64-bit in size) are zero-centred and varies in the interval [-1.0, 1.0], thus signed values.

PCM Types

Linear PCM

The most common PCM type.

Logarithmic PCM

Rather than representing sample amplitudes on a linear scale as linear PCM coding does, logarithmic PCM coding plots the amplitudes on a logarithmic scale. Log PCM is more often used in telephony and communications applications than in entertainment multimedia applications.

There are two major variants of log PCM: mu-law (u-law) and A-law. Mu-law coding uses the format number 0x07 in Microsoft multimedia files (WAV/AVI/ASF) and the fourcc ‘ulaw’ in Apple Quicktime files. A-law coding uses the format number 0x06 is Microsoft multimedia files and the fourcc ‘alaw’ in Apple Quicktime files.

Every byte of a log PCM data chunk maps to a signed 16-bit linear PCM sample. [TODO: Add either the conversion tables or conversion formulas]

Differential PCM

Values are encoded as differences between the current and the previous value. This reduces the number of bits required per audio sample by about 25% compared to PCM.

Adaptive DPCM

The size of the quantization step is varied to allow further reduction of the required bandwidth for a given signal-to-noise ratio.

Platform-Specific PCM Identifiers And Characteristics

This section describes how different computing platforms store PCM audio data and any format identifiers they use.

DOS/Windows

The first widely available, PC audio card that could play back PCM audio was the Creative Labs’ Sound Blaster. This drove the audio format for a lot of early audio-capable DOS applications and games. The original Sound Blaster could only play mono, unsigned 8-bit PCM data. Later Sound Blaster cards were capable of playing back 16-bit audio data. However, while these cards still played unsigned 8-bit PCM data, 16-bit data needed be signed.

Likely owing to the DOS/Intel little endian architecture, 16-bit PCM for the Sound Blaster also needs to be little endian.

Further, the original Sound Blaster was somewhat limited in the frequencies that it could support. The digital to analog conversion hardware (DAC) had to be programmed with a byte value (frequency divisor) that was processed through the following formula to yield the final playback frequency:

frequency = 1000000 / (256 - frequency_divisor)

A common divisor is 211 which yields an integer frequency of 22222 Hz, a common rate in the days of the Sound Blaster. Note that while very low frequencies (all the way down to 3921 Hz) were supported, frequencies above 45454 Hz were not.

Microsoft WAV/AVI/ASF Identifiers

Microsoft multimedia file formats such as WAVAVI, and ASF all share the WAVEFORMATEX data structure. The structure defines, among other properties, a 16-bit little endian audio identifier. The following audio identifiers correspond to various PCM formats:

  • 0x0001 denotes linear PCM
  • 0x0006 denotes A-law logarithmic PCM
  • 0x0007 denotes mu-law logarithmic PCM

Apple Macintosh

Native sample rates of early Apple Macintosh audio hardware included 11127 Hz and 22254 Hz. These sample rates are commonly seen in early QuickTime files.

Apple QuickTime Identifiers

Audio information in QuickTime files is stored along with an stsd atom that contains a FOURCC to indicate the format type. Apple QuickTime accomodates a number of different PCM formats:

  • ‘raw ‘ (need space character, ASCII 0x20, to round out FOURCC) denotes unsigned, linear PCM. 16-bit data is stored in little endian format.
  • ‘twos’ denotes signed (i.e. twos-complement) linear PCM. 16-bit data is stored in big endian format.
  • ‘sowt’ (‘twos’ spelled backwards) also denotes signed linear PCM. However, 16-bit data is stored in little endian format.
  • ‘in24’ denotes 24-bit, big endian, linear PCM.
  • ‘in32’ denotes 32-bit, big endian, linear PCM.
  • ‘fl32’ denotes 32-bit floating point PCM. (Presumably IEEE 32-bit; byte order?)
  • ‘fl64’ denotes 64-bit floating point PCM. (Presumably IEEE 64-bit; byte order?)
  • ‘alaw’ denotes A-law logarithmic PCM.
  • ‘ulaw’ denotes mu-law logarithmic PCM.

Red Book CD Audio

The “Red Book” defines the format of a standard audio compact disc (CD). The audio data on a standard CD consists of 16-bit linear PCM samples stored in little endian format, replayed at 44100 Hz (hence the standard term “CD-quality audio”), with left-right stereo interleaving.

Sega CD

Games made for the Sega CD, an add-on for the Sega Genesis game console, all seem to use sign-magnitude coding to store PCM information. It is a good guess that the Sega CD unit has custom hardware to play this format natively.

Sega Saturn

Games made for the Sega Saturn video game console generally seem to store PCM data as signed, 8-bit data or signed, big endian, 16-bit data. The curious property of the PCM, however, is the stereo handling. Generally, multimedia files on Sega Saturn games (most often stored using the Sega FILM format) would store a block of left channel information followed by a block of right channel information rather than interleaving left and right samples. This is likely due to custom multi-channel audio hardware in which individual channels are assigned pan positions. For playing stereo data, one channel is assigned extreme left and another is assigned extreme right. The correct samples are sent to their respective channels. Interleaved data would require deinterleaving before playback.

DVD PCM

Standard Video-DVDs can contain 16-bit, 20-bit and 24-bit signed, linear PCM (often called LPCM) streams. A stream can consist of up to 8 channels as long as the maximum bandwidth of 6.144 mbit/sec for any LPCM audio stream is not exceeded. Two samplerates are supported: 48kHz and 96kHz.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/166537.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java异或运算_异或校验

    java异或运算_异或校验异或运算常用来做数据的简单校验。Java的实现:(将字节数组两两异或,返回最后异或值)publicstaticbytegetXor(byte[]datas){ bytetemp=datas[0]; for(inti=1;i

    2022年10月5日
    3
  • PHP数组转json「建议收藏」

    PHP数组转json「建议收藏」$json=array( ‘total’=>3, ‘rows’=>array( array( ‘value’=>’1’, ‘color’=>”#DC143C” ), array(

    2022年6月21日
    22
  • Win7如何解决telnet不是内部或外部命令的方案!听语音

    Win7如何解决telnet不是内部或外部命令的方案!听语音

    2021年9月23日
    47
  • 2021美赛a题思路+参考文献

    2021美赛a题思路+参考文献2021美赛a题思路+参考文献:https://mianbaoduo.com/o/bread/YZackpdy

    2022年5月13日
    41
  • 机器学习之朴素贝叶斯分类算法

    机器学习之朴素贝叶斯分类算法一、数学知识相关1.独立事件–前提2.条件概率3.全概率公式4.贝叶斯公式5.朴素贝叶斯公式其中:P(A)叫做A事件的先验概率,即一般情况下,认为A发生的概率。 P(B|A)叫做似然度,是A假设条件成立的情况下发生B的概率。 P(A|B)叫做后验概率,在B发生的情况下发生A的概率,也就是要求的概率。P(B)叫做标准化常量,即在一般情况下,认为B…

    2022年10月15日
    1
  • AE常用表达式汇总「建议收藏」

    很多朋友面对AE表达式望而生畏,不过再难的东西都会有它最本质的规则,如果你理解了基本的原理和常用的表达式命令,这也许会提高你的工作效率。我通过自己对AE表达式的理解,尝试用最简单的语言解释一些看似复杂的操作,如果此篇文章能给你带来一些启发,不胜荣幸~首先什么是表达式呢?表达式就是AE内部基于JS编程语言开发的编辑工具,可以理解为简单的编程,不过没有编程那么复杂。其次表达式只能添加在可以编辑的关建帧的属性上,不可以添加在其他地方;表达式的使用根据实际情况来决定,如果关键帧可以更好的实现你想要的效果,使

    2022年4月6日
    356

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号