第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]

第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]1白噪声过程:零均值,同方差,无自相关(协方差为0)以后我们遇到的efshow如果不特殊说明,就是白噪声过程。对于正态分布而言,不相关即可推出独立,所以如果该白噪声如果服从正态分布,则其还将互相

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

 
1白噪声过程:
零均值,同方差,无自相关(协方差为0)
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
以后我们遇到的efshow如果不特殊说明,就是白噪声过程。
对于正态分布而言,不相关即可推出独立,所以如果该白噪声如果服从正态分布,则其还将互相独立。
 
2各种和模型
p阶移动平均过程:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
q阶自回归过程:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
自回归移动平均模型:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
如果ARMA(p,q)模型的表达式的特征根至少有一个大于等于1,则{y(t)}为积分过程,此时该模型称为自回归秋季移动平均模型(ARIMA)
 
 
时间序列啊,不就是求个通项公式,然后求出一个非递推形式的表达式吗?
(这个公式和自变量t有关,然后以后只要知道t就能得到对应的y的预测值)
 
3弱平稳/协方差平稳:
均值和方差为常数(即同方差),协方差仅与时间间隔有关
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
4自相关系数:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
5AR(1)模型(带白噪声的一阶差分方程)的平稳性:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
(1)如果初始条件为y0:
         则其解为第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
        (我们通过其解来判断其是否平稳)
         此时{y(t)}是不平稳的。
·        但是如果|a1|<1,其t足够大,则{y(t)}是平稳的。
            均值:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
            方差:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
            协方差:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
        所以有结论:
        第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
(2)初始条件未知:
          则其通解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
          {y(t)}平稳的条件为:
          1 |a1|<1
          2 且齐次解A(a1)^t为0:
             序列从很久前开始(即t很大,且结合1,则为0),
             或该过程始终平稳(A=0)
          所以说,解的稳定性和序列的平稳性是不一样的。
          这两条对所有的ARMA(p,q)模型都适用。
        (对于任意的ARMA(p,q)模型,齐次解为0是平稳性必要条件
         (ARMA(p,q)模型的齐次解为第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
6对于ARMA(2,1)模型的平稳性:
模型表达式为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.16)(截距项不影响平稳性,略去)
设其挑战解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](用待定系数法)
    则系数应当满足方程:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.17)
   序列{阿尔法i}收敛的条件是方程(2.16)对于的齐次方程的特征根都在单位圆之内
   (因为2.17中的差分方程对于的特征方程和方程2.16对于的特征方程是一模一样的)
   我们之所以只考虑特解,是因为我们让齐次解为0.
   此时该挑战解/特解:均值为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
                                    方差为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](t很大时用级数求和)
                                    协方差为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   所以其平稳性条件为(t很大):
  1模型对应的齐次方程的特征方程的特征根在单位圆内
  2齐次解为0。
 
7AR(p)模型的平稳性:
    模型:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    若其特征根都在单位圆之内,则其挑战解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    {阿尔法i}这些待定系数会满足特征方程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    (有木有发现其这个特征方程和模型对应的齐次方程的特征方程是一致的呢?)
    该解的均值、方差、协方差为:
    第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    所以,所有特征根在单位圆内,则有第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   (早高阶差分方程平稳性的必要条件中提到),所以均值是有限长苏
   第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   所以AR(p)平稳条件为(t很大):
  1模型对应的齐次方程的特征方程的特征根在单位圆内
  2齐次解为0。
   
8MA(q)模型的平稳性:
    模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    由于其级数求和为有限级数求和到q),所以MA(q)始终平稳
    
   无限MA过程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
  所以只要两个级数求和是有限的,就是MA(无穷)平稳的。
 
9ARMA(p,q)模型的平稳性:
    模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.22)
    其解的形式为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.23)
    只要2.22的特征根都在单位圆内或者
   逆特征方程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]的特征根在单位圆外,则(2.23)的每一项都平稳,所以其和也平稳,所以ARMA(p,q)模型平稳。(书上没再给出更多解释了)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/166719.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • ora-01007变量不在选择列表中_oracle存储过程变量赋值

    ora-01007变量不在选择列表中_oracle存储过程变量赋值使用oracle数据库过程中,偶尔遇到ORA-01008:并非所有变量都已绑定这个错误,此时应该查检sql中是否有以下情况:1、varsql=string.Format(“select*fromstudenttwheret.name=‘{0}‘andt.address=‘{1}‘”,name);此时编译不会报错,当执行sql时就会报“ORA-01008:并非所有…

    2022年9月7日
    0
  • 2019 阿里云峰会·北京站正式启动,互联网出海分论坛报名开启

    2019 阿里云峰会·北京站正式启动,互联网出海分论坛报名开启

    2021年7月2日
    86
  • 【spring框架】spring的几个Annotation实现(下)

    【spring框架】spring的几个Annotation实现(下)

    2021年9月4日
    81
  • JAVA贪吃蛇小游戏_js贪吃蛇难吗

    JAVA贪吃蛇小游戏_js贪吃蛇难吗《Java小游戏实现》:贪吃蛇在完成坦克大战之后,就想到了贪吃蛇这个小游戏,因为这两个游戏太像了,因此,就决定把这个游戏来尝试的写下。接下来的几篇博文就是来记录这个小游戏实现的全过程。突然,想起,一年前(时间是2015年7月3日),我刚学习Java的时候看过别人写的这个游戏源代码,还专门写了篇博文,连接如下:http://blog.csdn.net/u010412719/article/detail

    2022年4月20日
    45
  • top命令 详解_top命令的用法

    top命令 详解_top命令的用法top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。下面详细介绍它的使用方法。top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止该程序为止.比较准确的说,top命令提供了实时的对系统处理器的状态监视.它将显示系统中CPU最“敏感”的任务列表.该命令可以按CPU使用.内存使用和执行时间对任务进行排序;而且该命令的很多特性都可以通过交互式命令或者在个人定制文件中进行设定.1...

    2022年9月25日
    0
  • 虚拟机vmware安装步骤(如何在虚拟机安装软件)

    作者:seriouszyx独立博客记录了日常学习总结代码均可在Github上找到(求Star)本文讲解如何在虚拟机上安装KaliLinux,希望对大家有所帮助。准备:一台电脑,VMware(VMware安装教程)一、下载系统镜像文件1.首先下载系统镜像,进入kali官网,在Downloads中选择DownloadKaliLinux,如下图所示。…

    2022年4月10日
    45

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号