第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]

第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]1白噪声过程:零均值,同方差,无自相关(协方差为0)以后我们遇到的efshow如果不特殊说明,就是白噪声过程。对于正态分布而言,不相关即可推出独立,所以如果该白噪声如果服从正态分布,则其还将互相

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

 
1白噪声过程:
零均值,同方差,无自相关(协方差为0)
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
以后我们遇到的efshow如果不特殊说明,就是白噪声过程。
对于正态分布而言,不相关即可推出独立,所以如果该白噪声如果服从正态分布,则其还将互相独立。
 
2各种和模型
p阶移动平均过程:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
q阶自回归过程:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
自回归移动平均模型:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
如果ARMA(p,q)模型的表达式的特征根至少有一个大于等于1,则{y(t)}为积分过程,此时该模型称为自回归秋季移动平均模型(ARIMA)
 
 
时间序列啊,不就是求个通项公式,然后求出一个非递推形式的表达式吗?
(这个公式和自变量t有关,然后以后只要知道t就能得到对应的y的预测值)
 
3弱平稳/协方差平稳:
均值和方差为常数(即同方差),协方差仅与时间间隔有关
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
4自相关系数:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
5AR(1)模型(带白噪声的一阶差分方程)的平稳性:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
(1)如果初始条件为y0:
         则其解为第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
        (我们通过其解来判断其是否平稳)
         此时{y(t)}是不平稳的。
·        但是如果|a1|<1,其t足够大,则{y(t)}是平稳的。
            均值:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
            方差:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
            协方差:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
        所以有结论:
        第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
(2)初始条件未知:
          则其通解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
          {y(t)}平稳的条件为:
          1 |a1|<1
          2 且齐次解A(a1)^t为0:
             序列从很久前开始(即t很大,且结合1,则为0),
             或该过程始终平稳(A=0)
          所以说,解的稳定性和序列的平稳性是不一样的。
          这两条对所有的ARMA(p,q)模型都适用。
        (对于任意的ARMA(p,q)模型,齐次解为0是平稳性必要条件
         (ARMA(p,q)模型的齐次解为第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
6对于ARMA(2,1)模型的平稳性:
模型表达式为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.16)(截距项不影响平稳性,略去)
设其挑战解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](用待定系数法)
    则系数应当满足方程:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.17)
   序列{阿尔法i}收敛的条件是方程(2.16)对于的齐次方程的特征根都在单位圆之内
   (因为2.17中的差分方程对于的特征方程和方程2.16对于的特征方程是一模一样的)
   我们之所以只考虑特解,是因为我们让齐次解为0.
   此时该挑战解/特解:均值为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
                                    方差为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](t很大时用级数求和)
                                    协方差为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   所以其平稳性条件为(t很大):
  1模型对应的齐次方程的特征方程的特征根在单位圆内
  2齐次解为0。
 
7AR(p)模型的平稳性:
    模型:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    若其特征根都在单位圆之内,则其挑战解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    {阿尔法i}这些待定系数会满足特征方程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    (有木有发现其这个特征方程和模型对应的齐次方程的特征方程是一致的呢?)
    该解的均值、方差、协方差为:
    第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    所以,所有特征根在单位圆内,则有第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   (早高阶差分方程平稳性的必要条件中提到),所以均值是有限长苏
   第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   所以AR(p)平稳条件为(t很大):
  1模型对应的齐次方程的特征方程的特征根在单位圆内
  2齐次解为0。
   
8MA(q)模型的平稳性:
    模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    由于其级数求和为有限级数求和到q),所以MA(q)始终平稳
    
   无限MA过程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
  所以只要两个级数求和是有限的,就是MA(无穷)平稳的。
 
9ARMA(p,q)模型的平稳性:
    模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.22)
    其解的形式为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.23)
    只要2.22的特征根都在单位圆内或者
   逆特征方程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]的特征根在单位圆外,则(2.23)的每一项都平稳,所以其和也平稳,所以ARMA(p,q)模型平稳。(书上没再给出更多解释了)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/166719.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 线程池参数调优「建议收藏」

    线程池参数调优「建议收藏」ThreadPoolExecutorThreadPoolExecutor构造函数的五大参数publicThreadPoolExecutor(intcorePoolSize,intmaximumPoolSize,longkeepAliveTime,…

    2022年6月5日
    26
  • 几种常见GC算法介绍「建议收藏」

    几种常见GC算法介绍「建议收藏」本文主要是对常用的GC算法(引用计数法、标记-清除法、复制算法、标记-清除算法)作出相关的说明,并对相关知识做简单的介绍。一、什么是堆?    堆指用于动态(即执行程序时)存放对象的内存空间。而这个对象,在面向对象的编程中,它指“具有属性和行为的事物”,然而在GC的世界中,对象表示的是“通过应用程序利用的数据的集合”。具体到Java堆,它是所有线程共享的一块内存区域,在虚拟机启动时创…

    2022年6月16日
    28
  • java byte转中文乱码_java byte转string 涉及到字节流中有中文[通俗易懂]

    java byte转中文乱码_java byte转string 涉及到字节流中有中文[通俗易懂]最近遇到一个问题,我用java写了一个客户端通过socket向服务器端发送消息,发送的内容是字节流,编码格式是GBK,服务器在收到消息后,如果格式正确,会返回固定的消息格式,同样也是字节流,编码格式也是GBK。现在问题来了,我怎么把字节流转换为字符流,当然是要能显示出中文。于是上网搜了一下,找到一篇博客,网址如下:http://bbs.csdn.net/topics/391939108,代码如下:…

    2022年6月15日
    81
  • eclipse代码补全、代码提示及防空格自动补全

    eclipse代码补全、代码提示及防空格自动补全最近学了下eclipse编写java代码时可以自动提示并且解决了空格自动补全的苦恼问题,现在会了这个感觉很好,决定给大家分享下。打开eclipse依次点击Window–&gt;Perferences–&gt;Java–&gt;Editor–&gt;ContentAssist,  在【AutoactivationtriggersforJava:】选项后的文本框中会看…

    2022年5月31日
    64
  • socket使用方法_socket调试工具怎么用

    socket使用方法_socket调试工具怎么用socketpair函数概要如下:#include#includeintsocketpair(intdomain,inttype,intprotocol,intsv[2]);sys/types.h文件需要用来定义一些C宏常量。sys/socket.h文件必须包含进来定义socketpair函数原型。socketpair函数需要四个参数。他们是:套接口的域

    2022年10月14日
    6
  • Linux文件rwx属性「建议收藏」

    Linux文件rwx属性「建议收藏」Linux上的文件以.开头的文件被系统视为隐藏文件,仅用ls命令是看不到他们的,而用ls-a除了显示一般文件名外,连隐藏文件也会显示出来。  ls-l(这个参数是字母L的小写,不是数字1)  这个命令可以使用长格式显示文件内容,如果需要察看更详细的文件资料,就要用到ls-l这个指令。例如我在某个目录下键入ls-l可能会显示如下信息(一共7个栏位):  文件属性文件数拥有者

    2022年5月25日
    38

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号