第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]

第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]1白噪声过程:零均值,同方差,无自相关(协方差为0)以后我们遇到的efshow如果不特殊说明,就是白噪声过程。对于正态分布而言,不相关即可推出独立,所以如果该白噪声如果服从正态分布,则其还将互相

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

 
1白噪声过程:
零均值,同方差,无自相关(协方差为0)
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
以后我们遇到的efshow如果不特殊说明,就是白噪声过程。
对于正态分布而言,不相关即可推出独立,所以如果该白噪声如果服从正态分布,则其还将互相独立。
 
2各种和模型
p阶移动平均过程:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
q阶自回归过程:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
自回归移动平均模型:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
如果ARMA(p,q)模型的表达式的特征根至少有一个大于等于1,则{y(t)}为积分过程,此时该模型称为自回归秋季移动平均模型(ARIMA)
 
 
时间序列啊,不就是求个通项公式,然后求出一个非递推形式的表达式吗?
(这个公式和自变量t有关,然后以后只要知道t就能得到对应的y的预测值)
 
3弱平稳/协方差平稳:
均值和方差为常数(即同方差),协方差仅与时间间隔有关
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
4自相关系数:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
5AR(1)模型(带白噪声的一阶差分方程)的平稳性:
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
(1)如果初始条件为y0:
         则其解为第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
        (我们通过其解来判断其是否平稳)
         此时{y(t)}是不平稳的。
·        但是如果|a1|<1,其t足够大,则{y(t)}是平稳的。
            均值:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
            方差:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
            协方差:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
        所以有结论:
        第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
(2)初始条件未知:
          则其通解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
          {y(t)}平稳的条件为:
          1 |a1|<1
          2 且齐次解A(a1)^t为0:
             序列从很久前开始(即t很大,且结合1,则为0),
             或该过程始终平稳(A=0)
          所以说,解的稳定性和序列的平稳性是不一样的。
          这两条对所有的ARMA(p,q)模型都适用。
        (对于任意的ARMA(p,q)模型,齐次解为0是平稳性必要条件
         (ARMA(p,q)模型的齐次解为第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
 
 
6对于ARMA(2,1)模型的平稳性:
模型表达式为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.16)(截距项不影响平稳性,略去)
设其挑战解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](用待定系数法)
    则系数应当满足方程:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.17)
   序列{阿尔法i}收敛的条件是方程(2.16)对于的齐次方程的特征根都在单位圆之内
   (因为2.17中的差分方程对于的特征方程和方程2.16对于的特征方程是一模一样的)
   我们之所以只考虑特解,是因为我们让齐次解为0.
   此时该挑战解/特解:均值为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
                                    方差为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](t很大时用级数求和)
                                    协方差为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]等于第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   所以其平稳性条件为(t很大):
  1模型对应的齐次方程的特征方程的特征根在单位圆内
  2齐次解为0。
 
7AR(p)模型的平稳性:
    模型:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    若其特征根都在单位圆之内,则其挑战解为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    {阿尔法i}这些待定系数会满足特征方程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    (有木有发现其这个特征方程和模型对应的齐次方程的特征方程是一致的呢?)
    该解的均值、方差、协方差为:
    第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    所以,所有特征根在单位圆内,则有第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   (早高阶差分方程平稳性的必要条件中提到),所以均值是有限长苏
   第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   所以AR(p)平稳条件为(t很大):
  1模型对应的齐次方程的特征方程的特征根在单位圆内
  2齐次解为0。
   
8MA(q)模型的平稳性:
    模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
    由于其级数求和为有限级数求和到q),所以MA(q)始终平稳
    
   无限MA过程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
   第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]
  所以只要两个级数求和是有限的,就是MA(无穷)平稳的。
 
9ARMA(p,q)模型的平稳性:
    模型为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.22)
    其解的形式为:第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂](2.23)
    只要2.22的特征根都在单位圆内或者
   逆特征方程第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性[通俗易懂]的特征根在单位圆外,则(2.23)的每一项都平稳,所以其和也平稳,所以ARMA(p,q)模型平稳。(书上没再给出更多解释了)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/166719.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • ider激活码(JetBrains全家桶)

    (ider激活码)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月31日
    119
  • Intellij IDEA如何设置为中文界面?

    Intellij IDEA如何设置为中文界面?Ctrl+Alt+S快捷键打开Settings界面 选择Plugins 在搜索部分搜索chinese,选择下方的Chinese(simplified)Language下载 最后重启软件即可已经显示为中文了!!!!!

    2022年6月27日
    49
  • leetcode-53最大子序和(离线|分治)「建议收藏」

    leetcode-53最大子序和(离线|分治)「建议收藏」给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。示例 1:输入:nums = [-2,1,-3,4,-1,2,1,-5,4]输出:6解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。示例 2:输入:nums = [1]输出:1示例 3:输入:nums = [0]输出:0示例 4:输入:nums = [-1]输出:-1示例 5:输入:nums = [-100000]输出:-100000 提示:1

    2022年8月8日
    5
  • qtcpserver用法_qt tcpserver

    qtcpserver用法_qt tcpserver【Qt服务器与多线程使用】        ~~~~~~~~        QTcpServer致命缺点就是单线程!!要想实现多线程则需要继承该类之后重写incomingConnection函数,在该函数中将socketDescripto…

    2025年9月6日
    6
  • java 取当前时间年月日_Java获取当前时间年月日的方法[通俗易懂]

    java 取当前时间年月日_Java获取当前时间年月日的方法[通俗易懂]本文实例为大家分享了java获取当前时间年月日的具体代码,供大家参考,具体内容如下importjava.text.ParseException;importjava.text.SimpleDateFormat;importjava.util.Calendar;importjava.util.Date;publicclassDateTest{publicstaticvoidmai…

    2025年9月7日
    5
  • 易文档-快速编写专业漂亮的API文档,产品文档,使用手册

    易文档https://easydoc.top让您轻松编写和维护高质量的文档。从需求文档、API文档、部署文档到使用手册,多种定制文档编辑器,满足您整个开发周期需求;支持接口在线测试,一键生成mock配置。极致的编写体验,优雅的排版,让文档成为一种乐趣。查看示例文档查看使用技巧…

    2022年4月5日
    342

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号